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B S T R A C T

n this work, the performance of the mixed 3-field displacement/deviatoric-strain/pressure (𝐮∕𝐞∕𝑝) finite element is examined for nonlinear thermo-mechanical
tructural applications under incompressible behavior. The proposed FE model increases the solution accuracy in terms of strains and stresses, guaranteeing
esh-objective results in nonlinear analyses. Structural failure is modelled with J2-plasticity and J2-damage constitutive laws, introducing the isochoric behavior,

ypical of metals, in the material response. The solution of the coupled thermal and mechanical problems follows a staggered scheme and temperature dependent
aterial properties are introduced to study the effect of the thermal coupling in the mechanical problem. This FE approach is applicable with any interpolation

asis: triangles, quadrilaterals, tetrahedras, hexahedras and prisms.
A set of numerical benchmark problems is proposed to examine the influence of the enhanced accuracy of the proposed model in thermally-induced structural

ailure analyses in incompressible conditions. The study includes the comparison of the 𝐮∕𝐞∕𝑝 and 𝐮∕𝑝 FE formulations, where the effect of the thermal coupling in
he problem is investigated. The superior performance of the 3-field formulation with regard to the evaluation of collapse mechanisms, failure loads, mechanical
issipation and numerical stability in incompressible situations is shown.
. Introduction

Isochoric behavior in solid mechanics can be found in situations
ith incompressible elasticity, such as rubber-like materials, or
ndrained saturated porous media; also, in nonlinear constitutive laws
ith isochoric flow, such as plasticity models using the Von Mises
ield criterion typical for metals. In the latter case, the standard
isplacement-based formulation [1] fails to solve these incompressible
ituations, resulting in an almost completely locked solution, due to
umerical difficulties caused by the volumetric constraints and spurious
ressure oscillations [2–4].

To avoid or reduce the volumetric locking in these situations, sev-
ral numerical strategies have been proposed in the literature. These
re based on the use of mixed formulations [5–11], enhanced as-
umed strains methods [3,4,12–14], nodal pressure and strain averag-
ng [15–19]; and reduced and selective integration [20–22]. Within the
ixed approaches, the displacement/pressure (𝐮∕𝑝) FE has become a
idespread method to solve incompressibility both in solid and fluid
echanics.

Recently, the authors have proposed the use of the mixed stress/
isplacement (𝝈∕𝐮) and strain/displacement (𝜺∕𝐮) finite element for-
ulations to increase the accuracy of the computed solution in terms

f stresses and strains [23–32]. This increase in the precision of the
alculations has proven to be crucial to obtain mesh objective results
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in structural failure problems [24,28,29]. In nonlinear applications, the
𝜺∕𝐮 FE is preferred over the 𝝈∕𝐮 because it allows to readily implement
and adopt the constitutive laws usually considered in solid mechanics,
which are defined in strain-driven format.

In view of this, the 3-field displacements/deviatoric-stress/pressure
𝐮∕𝐬∕𝑝 and the displacement/deviatoric-strain/pressure 𝐮∕𝐞∕𝑝 FEs have
been proposed to address incompressible problems with enhanced ac-
curacy compared to the mixed displacement/pressure 𝐮∕𝑝 FEs com-
monly adopted in isochoric problems [33–36]. These three methods
require the constitutive equation split into its volumetric and deviatoric
components.

Alternatively, the use of an 𝜺∕B-bar method has been proposed,
showing a better accuracy with respect to the standard B-bar approach
also commonly adopted to solve nearly incompressible problems [10,
20–22]. These strategies present the advantage of not requiring the
split of the constitutive equation in volumetric and deviatoric parts.
Notwithstanding, this approach is unfit for the elastic incompressible
limit (𝜈 = 0.5) and can be used only in the near incompressible limit.
Also, they present the limitation of being restricted to quadrilaterals
and hexahedral elements.
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Table 1
FE and their applicability.

Standard (𝐮) B-bar 𝐮∕𝑝 𝝈∕𝑢 𝜺∕𝐮 𝜺∕B-bar 𝐮∕𝒔∕𝑝 𝐮∕𝐞∕𝑝

References [1] [20–22] [5–11] [28] [23–27,29–31] [10] [34] [33,35]

Incompressibility ✘ ✓* ✓ ✘ ✘ ✓* ✓ ✓

Strain-driven constitutive laws ✓ ✓ ✓ ✘ ✓ ✓ ✘ ✓

Avoids the split
✓ ✓ ✘ ✓ ✓ ✓ ✘ ✘of constitutive equations

Higher stress/strain accuracy ✘ ✘ ✘ ✓ ✓ ✓ ✓ ✓

General interpolation basis
✓ ✘ ✓ ✓ ✓ ✘ ✓ ✓(triangles, quadrilaterals,

tetrahedras, hexahedras, prisms)
v

Table 1 summarizes the advantages and disadvantages of these
lternative formulations. The superscript (*) in the B-bar and 𝜺∕B-

bar methods indicates that they are not apt for fully incompressible
problems and are used for near incompressibility only.

In our previous work [35] it was shown that, when considering
incompressibility, the mixed displacement/deviatoric-strain/pressure
𝐮∕𝐞∕𝑝 formulation allows for a better evaluation of stresses, strains and
mechanical dissipation than the mixed displacement/pressure 𝐮∕𝑝 ele-
ment and that a spurious overestimation of the mechanical dissipation
in nonlinear analyses takes place with the 𝐮∕𝑝 FE.

Mixed finite elements have been extensively used to solve problems
involving softening behavior in damage and plasticity, strain localiza-
tion and size-effect [27–29,32,37–41], but few studies, so far, have
been conducted considering non-isothermal behavior [42–45].

Saloustros et al. (2021) [10] detail the advantages of using mixed
solid elements to address typical plate, beam and shell problems; among
them: this approach does not require additional kinematical hypothe-
ses (planar sections; shear stress and warping through the thickness);
does not pose compatibility problems between different elements used
by the structural model; can easily accommodate construction details
(e.g., web-perforated steel beams, layered elements, element-stiffeners);
does not require rotational degrees of freedom and awkward boundary
condition alternatives (e.g., “soft” and “hard” supports). In the specific
case of thermal loading, no additional assumptions need to be made
about the through thickness temperature distribution.

Alternatively, the Carrera Unified Formulation (CUF) [46] has been
applied to solve different multifield problems in multilayered struc-
tures using beam, plates and shell elements. The CUF has been used
with thermal loads [47], thermo-elastic coupling [48,49], piezoelectric
structures [50,51] and a complete multifield formulation has been
proposed [52,53].

The interest in solving coupled thermo-mechanical problems arises
from engineering applications where temperature-dependency of the
mechanical properties is relevant as, for instance, on the fire analy-
sis of structures, manufacturing processes (casting, welding, additive
manufacturing, etc.), aerospace industry, turbines and high-speed civil
transport industry [54]. Specifically, in structural failure problems, the
presence of an external heat source and/or the mechanical dissipation
that takes place during the process may produce an increase in the
temperature field that significantly influences the observed nonlinear
behavior of the material.

For these reasons, this work focuses on the accurate analysis of
thermally-coupled structural failure under isochoric conditions. The
computation of the coupled thermal and mechanical problems is made
following a staggered approach. The mixed 𝐮∕𝐞∕𝑝 FE formulation is
employed to solve the mechanical problem, with the aim of increas-
ing the accuracy of the computed stresses, strains and mechanical
dissipation and to obtain mesh-objective results. Structural failure is
modelled using J2-damage and J2-plasticity constitutive laws, intro-
ducing an incompressible behavior in the material nonlinear response.
The thermal problem is solved using an implicit Euler method and
temperature-dependent material properties are considered in the anal-
ysis. A comparison of the performance of the 3-field formulation with
2

the 𝐮∕𝑝 element is introduced to assess the advantages of the proposed
model.

The objectives of this paper are: (1) to extend the mixed 𝐮∕𝐞∕𝑝 for-
mulation to address the incompressible limit and isochoric constitutive
laws in thermo-mechanical applications; (2) to investigate the influence
of temperature-dependent parameters in thermo-mechanical failure; (3)
to assess the enhanced accuracy of the 3-field (𝐮∕𝐞∕𝑝) over the mixed
𝐮∕𝑝 in thermo-mechanical analyses.

Therefore, the paper is organized as follows. Section 2 addresses the
mixed 𝐮∕𝐞∕𝑝 strong and weak forms, as well as the resulting FE formu-
lation. In Section 3 the coupling between the thermal and mechanical
problems is introduced. In Section 4 the constitutive models adopted
in the numerical examples, isotropic J2-damage and J2-plasticity, are
summarized. In Section 5 several numerical simulations are presented
to compare the performance and accuracy of the 3-field formulation
with respect to the 𝐮∕𝑝 FE in thermo-mechanical problems. Finally,
Section 6 presents the concluding remarks.

2. Mixed 𝟑-field (𝐮∕𝐞∕𝒑) mechanical problem

2.1. Volumetric/deviatoric split

Using Voigt’s notation, in 3D, the displacement 𝐮 = (𝑢, 𝑣,𝑤)𝑇 is a
ector of 3 components and the stress 𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧)𝑇 and

the strain 𝜺 = (𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝜀𝑥𝑦, 𝜀𝑦𝑧, 𝜀𝑥𝑧)𝑇 are vectors of 6 components.
The constitutive equation relates the stress vector 𝜎 and the strain

vector 𝜺

𝝈 = 𝐂𝜺 (1)

where 𝐂 is the fourth-order secant constitutive tensor expressed in
Voigt’s notation as a 6 × 6 matrix. In this work, the nonlinear mechan-
ical behavior is introduced through the adoption of the J2-damage and
J2-plasticity constitutive laws, presented in Section 4. These establish
the nonlinear relation between stresses and strains followed by the
material and define the corresponding secant constitutive matrix 𝐂.

Herein, the volumetric/deviatoric split of the stresses and strains is
introduced, respectively as:

𝝈 = 𝑝𝐈 + 𝐬 (2)

𝜺 = 1
3
𝑒𝑣𝑜𝑙𝐈 + 𝐞 (3)

where 𝐈 = (1, 1, 1, 0, 0, 0)𝑇 is the second-order identity tensor in Voigt’s
notation, 𝑝 is the pressure, which is a scalar, and 𝐬 is the deviatoric-
stress vector

𝑝 = 1
3
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) (4)

𝐬 = (𝜎𝑥 − 𝑝, 𝜎𝑦 − 𝑝, 𝜎𝑧 − 𝑝, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧)𝑇 (5)

also, 𝑒𝑣𝑜𝑙 is the volumetric strain (scalar), and 𝐞 is the deviatoric-strain
vector, defined as

𝑒 = (𝜀 + 𝜀 + 𝜀 ) = 𝐆𝑇 𝐮 (6)
𝑣𝑜𝑙 𝑥 𝑦 𝑧
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𝐞 = (𝜀𝑥 −
1
3
𝑒𝑣𝑜𝑙 , 𝜀𝑦 −

1
3
𝑒𝑣𝑜𝑙 , 𝜀𝑧 −

1
3
𝑒𝑣𝑜𝑙 , 𝜀𝑥𝑦, 𝜀𝑦𝑧, 𝜀𝑥𝑧)𝑇 (7)

𝑒𝑣𝑜𝑙 can be computed as the divergence of the displacements 𝐮 where
𝐆 = (𝜕𝑥, 𝜕𝑦, 𝜕𝑧)𝑇 is the gradient operator and 𝐆𝑇 is the adjoint diver-
gence operator.

The volumetric/deviatoric split is also applied to the constitutive
relationship:

𝑝 = 𝐶𝑣𝑜𝑙𝑒𝑣𝑜𝑙 (8)

𝐬 = 𝐂𝑑𝑒𝑣𝐞 (9)

where 𝐶𝑣𝑜𝑙 is defined as 𝐶𝑣𝑜𝑙 = 1
9 𝐈
𝑇𝐂𝐈 and 𝐂𝑑𝑒𝑣 is the deviatoric secant

constitutive matrix.
Note that

𝐬 = 𝐂𝑑𝑒𝑣𝜺 (10)

Let 𝐉 be the fourth-order identity tensor, expressed following Voigt’s
notation as a 6 × 6 identity matrix

𝐉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)

and the volumetric and deviatoric fourth-order operators, 𝐕 and 𝐘,
respectively, are introduced in Voigt’s notation as

𝐕 = 1
3
𝐈𝐈𝑇 = 1

3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

= 𝐉 − 𝐕 = 1
3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

For the case of isotropic materials, 𝐶𝑣𝑜𝑙 and 𝐂𝑑𝑒𝑣 in Eqs. (8) and (9)
an be written as
𝑣𝑜𝑙 = 𝐾 (14)

𝑑𝑒𝑣 = 𝐘𝐂 = 2𝐺𝐘 (15)

here 𝐾 is the secant bulk modulus and 𝐺 is the secant shear modulus.
This leads to the following constitutive relationships:

= 𝐾𝑒𝑣𝑜𝑙 (16)

= 2𝐺𝐞 (17)

.2. Strong form

The strong form of the nonlinear solid mechanics problem is written
n terms of the displacement 𝐮, deviatoric-strain 𝐞, and pressure 𝑝 fields.
he displacement 𝐮 and the total strains 𝜺 are related through the
ompatibility equation

= 𝐒𝐮 (18)

here 𝐒 is the differential symmetric gradient operator

=
⎡

⎢

⎢

𝜕𝑥 0 0 𝜕𝑦 0 𝜕𝑧
0 𝜕𝑦 0 𝜕𝑥 𝜕𝑧 0

⎤

⎥

⎥

𝑇

(19)
3

⎣ 0 0 𝜕𝑧 0 𝜕𝑦 𝜕𝑥 ⎦
quilibrium between the stress vector 𝝈 and the body forces 𝐟 =
𝑓𝑥, 𝑓𝑦, 𝑓𝑧)𝑇 is defined by the Cauchy equation

𝑇 𝝈 + 𝐟 = 𝟎 (20)

here 𝐒𝑇 is the differential divergence operator, adjoint to the 𝐒 in
q. (18).

Introducing the split of the strains, Eqs. (3) and (6), in Eq. (18),
eads to

= 𝐒𝐮 − 1
3
𝐈 (𝐆𝑇 𝐮)
⏟⏟⏟
𝑒𝑣𝑜𝑙

= 𝐖𝐮 (21)

where 𝐖 is the operator defined as

𝐖 = 𝐒 − 1
3
𝐈𝐆𝑇 = 1

3

⎡

⎢

⎢

⎣

2𝜕𝑥 −𝜕𝑥 −𝜕𝑥 3𝜕𝑦 0 3𝜕𝑧
−𝜕𝑦 2𝜕𝑦 −𝜕𝑦 3𝜕𝑥 3𝜕𝑧 0
−𝜕𝑧 −𝜕𝑧 2𝜕𝑧 0 3𝜕𝑦 3𝜕𝑥

⎤

⎥

⎥

⎦

𝑇

(22)

Note that 𝐖 = 𝐘𝐒.
Next, introducing Eqs. (2) and (9) in Eq. (20), where the identity

𝑇 𝐈 = 𝐆 is used, and Eq. (6) in Eq. (8), the continuous strong form of
he mixed 𝐮∕𝐞∕𝑝 formulation is

𝐒𝑇 (𝐂𝑑𝑒𝑣𝐞) +𝐆𝑝 + 𝐟 = 𝟎
𝐖𝐮 − 𝐞 = 𝟎

𝐆𝑇 𝐮 −
𝑝

𝐶𝑣𝑜𝑙
= 0

(23)

ogether with the prescribed mechanical boundary conditions. The
oundary 𝛤 can be split according to the Dirichlet and Newman con-
itions imposed, respectively as 𝛤𝑢 and 𝛤𝑡, such that 𝛤 = 𝛤𝑢 ∪ 𝛤𝑡 and
𝛤𝑢 ∩ 𝛤𝑡 = ∅.

It is assumed herein that the prescribed displacements vanish on the
boundary 𝛤𝑢

𝐮 = 𝟎 in 𝛤𝑢 (24)

In addition, the prescribed traction on the boundary 𝛤𝑡 are

𝐭 = �̄� in 𝛤𝑡 (25)

2.3. Weak form

The variational form of the problem in Eqs. (23) is then obtained as
follows.

Firstly, Eq. (23)a is premultiplied by an arbitrary virtual displace-
ment 𝛿𝐮 and integrated over the spatial domain:

∫𝛺
𝛿𝐮𝑇 [𝐒𝑇 (𝐂𝑑𝑒𝑣𝐞)]𝑑𝛺 + ∫𝛺

𝛿𝐮𝑇 [𝐆𝑝]𝑑𝛺 + ∫𝛺
𝛿𝐮𝑇 𝐟𝑑𝛺 = 𝟎 ∀𝛿𝐮 (26)

The virtual displacement 𝛿𝐮 also conforms with the boundary con-
ditions, so that 𝛿𝐮 = 𝟎 in 𝛤𝑢. Then, the Divergence Theorem is applied
to the first and second terms of Eq. (26) and the boundary term is
split 𝛤 = 𝛤𝑢 ∪ 𝛤𝑡. The Dirichlet boundary terms vanish (𝛿𝐮 = 𝟎) and,
considering that 𝐒𝑇 𝐈 = 𝐆, the variational form of Eq. (26) becomes

∫𝛺
(𝐒𝛿𝐮)𝑇 (𝐂𝑑𝑒𝑣𝐞)𝑑𝛺 + ∫𝛺

(𝐒𝛿𝐮)𝑇 (𝑝𝐈)𝑑𝛺 = ∫𝛺
𝛿𝐮𝑇 𝐟𝑑𝛺 + ∫𝛤𝑡

𝛿𝐮𝑇 �̄�𝑑𝛤

= 𝑊 (𝛿𝐮) ∀𝛿𝐮
(27)

Eq. (27) is equivalent to the Principle of Virtual Work, as the right
hand side term, noted 𝑊 (𝛿𝐮), is the virtual work done by the traction �̄�
and body forces 𝐟 while the left hand side constitutes the virtual work
of the internal forces.

Secondly, Eq. (23)b is premultiplied by 𝐂𝑑𝑒𝑣 to obtain a symmetric
problem and then premultiplied by an arbitrary virtual deviatoric-strain
vector 𝛿𝐞 and integrated over the spatial domain

∫𝛺
𝛿𝐞𝑇 [𝐂𝑑𝑒𝑣( 𝐘𝐒

⏟⏟⏟
=𝐖

𝐮)]𝑑𝛺 − ∫𝛺
𝛿𝐞𝑇 (𝐂𝑑𝑒𝑣𝐞)𝑑𝛺 = 𝟎 ∀𝛿𝐞 (28)

Note that 𝐂𝑑𝑒𝑣𝐘 = 𝐂𝑑𝑒𝑣.
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Thirdly, Eq. (23)c is premultiplied by an arbitrary virtual pressure
vector 𝛿𝑝 and integrated over the spatial domain

∫𝛺
𝛿𝑝𝑇 (𝐆𝑇 𝐮)𝑑𝛺 − ∫𝛺

𝛿𝑝𝑇
𝑝
𝐶𝑣𝑜𝑙

𝑑𝛺 = 0 ∀𝛿𝑝 (29)

The resulting variational form of the 3-field formulation is:

∫𝛺(𝐒𝛿𝐮)
𝑇 (𝐂𝑑𝑒𝑣𝐞)𝑑𝛺 + ∫𝛺(𝐒𝛿𝐮)

𝑇 (𝑝𝐈)𝑑𝛺 = 𝑊 (𝛿𝐮) ∀𝛿𝐮
∫𝛺 𝛿𝐞

𝑇 [𝐂𝑑𝑒𝑣(𝐒𝐮)]𝑑𝛺 − ∫𝛺 𝛿𝐞
𝑇 (𝐂𝑑𝑒𝑣𝐞)𝑑𝛺 = 𝟎 ∀𝛿𝐞

∫𝛺 𝛿𝑝
𝑇 (𝐆𝑇 𝐮)𝑑𝛺 − ∫𝛺 𝛿𝑝

𝑇 𝑝
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0 ∀𝛿𝑝

(30)

The solution to the mixed problem is: find the unknowns 𝐮, 𝐞 and
𝑝 that verify the system of Eqs. (30) and comply with the boundary
condition 𝐮 = 𝟎 on 𝛤𝑢 given the arbitrary virtual displacement 𝛿𝐮,
which also vanishes on 𝛤𝑢 and the arbitrary virtual deviatoric-strain
and pressure 𝛿𝐞 and 𝛿𝑝, respectively.

2.4. FE approximation

The continuous domain of the problem is discretized in a FE par-
tition such that 𝛺 = ∪𝛺𝑒, and discrete FE approximations of the
displacements 𝐮, the deviatoric-strains 𝐞 and the pressure 𝑝 are taken,
such that
𝐮 =̃ �̂� = 𝐍𝑢𝐔
𝐞 =̃ �̂� = 𝐍𝑒𝐄
𝑝 =̃ �̂� = 𝐍𝑝𝐏

(31)

where 𝐔, 𝐄 and 𝐏 are vectors comprising the values of the displace-
ents, deviatoric-strains and pressures at the nodes of the finite ele-
ent mesh. 𝐍𝑢, 𝐍𝑒 and 𝐍𝑝 are the matrices containing the interpolation

unctions adopted in the FE approximation.
In the Galerkin method, the same approximation is taken for the

iscrete virtual displacements, virtual deviatoric-strains and virtual
ressure, so that

𝛿𝐮 =̃ 𝛿�̂� = 𝐍𝑢𝛿𝐔
𝛿𝐞 =̃ 𝛿�̂� = 𝐍𝑒𝛿𝐄
𝛿𝑝 =̃ 𝛿�̂� = 𝐍𝑝𝛿𝐏

(32)

Introducing these approximations, the system of Eqs. (30) becomes:

∫𝛺 (𝐒𝐍𝑢𝛿𝐔)𝑇
⏟⏞⏞⏟⏞⏞⏟
=𝛿𝐔𝑇 𝐁𝑇𝑢

(𝐂𝑑𝑒𝑣𝐍𝑒𝐄)𝑑𝛺 + ∫𝛺 (𝐒𝐍𝑢𝛿𝐔)𝑇 (𝐍𝑝𝐏𝐈)𝑑𝛺 = �̂� (𝛿𝐔) ∀𝛿𝐔

∫𝛺 𝛿𝐄
𝑇𝐍𝑇𝑒 [𝐂

𝑑𝑒𝑣(𝐒𝐍𝑢𝐔)
⏟⏟⏟
=𝐁𝑢𝐔

]𝑑𝛺 − ∫𝛺 𝛿𝐄
𝑇𝐍𝑇𝑒 (𝐂

𝑑𝑒𝑣𝐍𝑒𝐄)𝑑𝛺 = 𝟎 ∀𝛿𝐄

∫𝛺 𝛿𝐏
𝑇𝐍𝑇𝑝 (𝐆

𝑇𝐍𝑢𝐔)𝑑𝛺 − ∫ 𝑇𝛺 𝛿𝐏𝑇𝐍𝑇𝑝
𝐍𝑝𝐏
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0 ∀𝛿𝐏

(33)

where 𝐁𝑢= 𝐒𝐍𝑢 is the discrete strain–displacement matrix.
In Eq. (33)a �̂� (𝛿𝐔) is the work done by the traction �̄� and body

forces 𝐟 defined as

�̂� (𝛿𝐔) = ∫𝛺
𝛿𝐔𝑇𝐍𝑇𝑢 𝐟𝑑𝛺 + ∫𝛤𝑡

𝛿𝐔𝑇𝐍𝑇𝑢 �̄�𝑑𝛤 (34)

Note that the equality 𝐆 = 𝐒𝑇 𝐈 can be used again in the second term
in Eq. (33)a

∫𝛺
(𝐒𝐍𝑢𝛿𝐔)𝑇 (𝐍𝑝𝐏𝐈)𝑑𝛺 = ∫𝛺

𝛿𝐔𝑇𝐍𝑇𝑢 𝐒
𝑇 𝐈𝐍𝑝𝐏𝑑𝛺 = ∫𝛺

𝛿𝐔𝑇𝐍𝑇𝑢 𝐆𝐍𝑝𝐏𝑑𝛺

(35)

This shows that the resulting problem is symmetric.
The virtual displacement 𝛿𝐔, virtual deviatoric-strain 𝛿𝐄 and vir-

ual pressure 𝛿𝐏 are arbitrary nodal vectors. Therefore, the system of
qs. (33) can be written in matrix form as

𝟎 𝐊𝑈𝐸 𝐊𝑈𝑃
(𝐊𝑈𝐸 )𝑇 −𝐌𝐸𝐸 𝟎

𝑇

⎤

⎥

⎥

⎡

⎢

⎢

𝐔
𝐄

⎤

⎥

⎥

=
⎡

⎢

⎢

𝐅
𝟎

⎤

⎥

⎥

(36)
4

(𝐊𝑈𝑃 ) 𝟎 −𝐌𝑃𝑃 ⎦ ⎣ 𝐏 ⎦ ⎣ 𝟎 ⎦
here [𝐔𝐄𝐏]𝑇 is the array of nodal values of displacements, deviatoric-
trains and pressure and

𝐸𝐸 = ∫𝛺
𝐍𝑇𝑒 𝐂

𝑑𝑒𝑣𝐍𝑒𝑑𝛺 (37)

𝑃𝑃 = ∫𝛺
𝐍𝑇𝑝

1
𝐶𝑣𝑜𝑙

𝐍𝑝𝑑𝛺 (38)

𝑈𝐸 = ∫𝛺
𝐁𝑇𝑢 𝐂

𝑑𝑒𝑣𝐍𝑒𝑑𝛺 (39)

𝑈𝑃 = ∫𝛺
𝐍𝑇𝑢 𝐆𝐍𝑝𝑑𝛺 (40)

nd

= ∫𝛺
𝐍𝑇𝑢 𝐟𝑑𝛺 + ∫𝛤𝑡

𝐍𝑇𝑢 �̄�𝑑𝛤 (41)

.5. Variational multi-scale stabilization

A crucial issue for mixed methods is stability. In order to ensure
his, the mixed interpolation adopted needs to satisfy the Inf–Sup
ondition. However, stable combinations of interpolation spaces are
roblem dependent, difficult to formulate and, often, rather exotic
6,55–58].

A common strategy when using mixed FEs is to adopt equal or-
er interpolation functions for all the proposed fields. This approach
s preferred because it is far simpler to formulate and implement.
owever, equal order interpolation does not comply with the Inf–Sup
ondition [59,60] and requires the use of a stabilization method. Tech-
iques based on the Variational Multi-Scale method (VMS) [61–63]
ave been used to this end. They consist on the numerical enrichment
f the FE fields adding a fine scale refinement to the FE solution, which
rovides the discrete problem with the necessary stability. Within the
MS approach, Codina introduced the Orthogonal Subgrid-Scales (OSS)

n which the fine scales are chosen orthogonal to the FE space [64–66].
The VMS technique has been successfully applied to stabilize the

ollowing mixed formulations using equal order linear approximations
or all fields: displacement/pressure (𝐮∕𝑝); stress/displacement (𝝈∕𝐮);
train/displacement (𝜺∕𝐮); displacement/deviatoric-stress/pressure
𝐮∕𝐬∕𝑝); as well as the displacement/deviatoric-strain/pressure (𝐮∕𝐞∕𝑝)

FEs [25,28,29,34,67–70].
In this work, equal order linear interpolation functions are used for

all unknown fields. A Variational Multiscale Stabilization procedure
is adopted to circumvent the strictness of the Inf–Sup condition. The
stabilization procedure modifies the discrete variational form within
the framework of the VMS methods [5,62,63,65].

The idea of the VMS approach is to enhance the FE approximation
of the continuous solution by adding to the discrete fields 𝐮ℎ, 𝐞ℎ, and 𝑝ℎ
from the FE space) a term �̃�, �̃�, and �̃� approximating the finer sub-grid
cale that cannot be captured at the FE scale:

𝐮 =̃ �̂� = 𝐮ℎ + �̃�
𝐞 =̃ �̂� = 𝐞ℎ + �̃�
𝑝 =̃ �̂� = 𝑝ℎ + �̃�

(42)

The Appendix details the derivation of the discrete stabilized for-
ulation for the 𝐮∕𝐞∕𝑝 FEs.

The resulting stabilized FE system of equations is shown as Eq. (43)
n Box I where [𝐔𝐄𝐏]𝑇 is the array of nodal values of displacements,
eviatoric-strains and pressure and

𝐞
𝑈𝑈 = ∫𝛺

𝐁𝑇𝑢 𝐂
𝑑𝑒𝑣𝐁𝑢𝑑𝛺 (44)

𝑝
𝑈𝑈 = ∫𝛺

𝐍𝑇𝑢 𝐆𝐆𝑇𝐍𝑢𝑑𝛺 (45)

𝐸𝐸 = ∫𝛺
(𝐍𝑇𝑒 𝐒𝐂

𝑑𝑒𝑣)(𝐂𝑑𝑒𝑣𝐒𝑇𝐍𝑒)𝑑𝛺 (46)

𝑃𝑃 = 𝐍𝑇𝐆𝑇𝐆𝐍𝑝𝑑𝛺 (47)
∫𝛺 𝑝



Engineering Structures 261 (2022) 114213C.A. Moreira et al.
⎡

⎢

⎢

⎢

⎣

𝜏𝑒𝐊𝐞
𝑈𝑈 + 𝜏𝑝𝐊

𝑝
𝑈𝑈 (1 − 𝜏𝑒)𝐊𝑈𝐸 (1 − 𝜏𝑝

𝐶𝑣𝑜𝑙 )𝐊𝑈𝑃
(1 − 𝜏𝑒)(𝐊𝑈𝐸 )𝑇 −(1 − 𝜏𝑒)𝐌𝐸𝐸 − 𝜏𝑢𝐊𝐸𝐸 −𝜏𝑢𝐊𝐸𝑃
(1 − 𝜏𝑝

𝐶𝑣𝑜𝑙 )(𝐊𝑈𝑃 )𝑇 −𝜏𝑢(𝐊𝐸𝑃 )𝑇 −(1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 )𝐌𝑃𝑃 − 𝜏𝑢𝐊𝑃𝑃

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐔
𝐄
𝐏

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐅
𝟎
𝟎

⎤

⎥

⎥

⎦

(43)

Box I.
𝐊𝐸𝑃 = ∫𝛺
(𝐍𝑇𝑒 𝐒𝐂

𝑑𝑒𝑣)(𝐆𝐍𝑝)𝑑𝛺 (48)

Note that the problem is symmetric and that for a converged solu-
tion (when ℎ → 0), the stabilization terms vanish. For non-converged
situations these terms depend on the residual value of the system
of equations. Varying the stabilization parameters 𝜏𝑢, 𝜏𝑒 and 𝜏𝑝 pro-
duces slightly different results for a given FE mesh; however, the
residual-based nature ensures the uniqueness of the solution upon
mesh convergence. In linear problems, the optimal convergence rate
is achieved using the stabilization parameters defined in Eq. (A.4) of
the Appendix, which decrease on mesh refinement [71].

Finally, some remarks regarding the implementation of the formu-
lation in FE codes are given.

Note that the 𝐊𝐸𝐸 and 𝐊𝐸𝑃 sub-matrices in Eqs. (46) and (48) can
be rewritten as

𝐊𝐸𝐸 = ∫𝛺
(𝐁𝑒𝐂𝑑𝑒𝑣)(𝐂𝑑𝑒𝑣𝐁𝑇𝑒 )𝑑𝛺 (49)

𝐊𝐸𝑃 = ∫𝛺
(𝐁𝑒𝐂𝑑𝑒𝑣)(𝐆𝐍𝑝)𝑑𝛺 (50)

where 𝐁(𝑖)
𝑒 is a submatrix with an analogous structure to 𝐁(𝑖)

𝑢 , defined
for each node (i) of a given element as

𝐁(𝑖)
𝑒 = 𝐍(𝑖)

𝑒
𝑇 𝐒

=

⎡

⎢

⎢

⎢

⎣

𝜕𝑥𝑁
(𝑖)
𝑒 0 0 𝜕𝑦𝑁

(𝑖)
𝑒 0 𝜕𝑧𝑁

(𝑖)
𝑒

0 𝜕𝑦𝑁
(𝑖)
𝑒 0 𝜕𝑥𝑁

(𝑖)
𝑒 𝜕𝑧𝑁

(𝑖)
𝑒 0

0 0 𝜕𝑧𝑁
(𝑖)
𝑒 0 𝜕𝑦𝑁

(𝑖)
𝑒 𝜕𝑥𝑁

(𝑖)
𝑒

⎤

⎥

⎥

⎥

⎦

𝑇

(51)

In this work, where the same interpolation functions are used for
both the displacement and the deviatoric-strain, 𝐁𝑒 and 𝐁𝑢 are the
same.

Note also that when using the same interpolation functions for both
the displacement and the pressure, the submatrix 𝐍𝑇𝑢 𝐆 is equal to the
submatrix 𝐆𝐍𝑝. Specifically, it can be observed that, for each node (i)
of a given element:

𝐍(𝑖)
𝑢
𝑇𝐆 = (𝜕𝑥𝑁 (𝑖)

𝑢 𝜕𝑦𝑁
(𝑖)
𝑢 𝜕𝑧𝑁

(𝑖)
𝑢 )𝑇 (52)

𝐆𝐍(𝑖)
𝑝 = (𝜕𝑥𝑁 (𝑖)

𝑝 𝜕𝑦𝑁
(𝑖)
𝑝 𝜕𝑧𝑁

(𝑖)
𝑝 )𝑇 (53)

3. Thermal problem and thermo-mechanical coupling

3.1. Strong form

The strong form of the thermal problem is written in terms of the
temperature 𝑇 as the energy balance equation

𝜌𝑐�̇� = −∇ ⋅ 𝐪 + �̇� + ̇𝑚𝑒𝑐ℎ 𝑜𝑛 𝛺 (54)

where �̇� is the temperature time derivative, 𝜌 = 𝜌(𝑇 ) is the temperature-
dependent material density, 𝑐 = 𝑐(𝑇 ) is the temperature-dependent
specific heat capacity of the material, �̇� represents the heat source that
may be present in the problem and ̇𝑚𝑒𝑐ℎ is the rate of mechanical
dissipation that takes place in the body, dependent on the constitutive
model employed. Here, the heat flux, 𝐪, is computed according to the
Fourier law

𝐪 = −𝑘∇𝑇 (55)
5

Fig. 1. Double clamped rectangular beam: Problem setting.

with 𝑘 = 𝑘(𝑇 ) being the thermal conductivity of the material, also
temperature-dependent. The left-hand side of Eq. (54) is the enthalpy
rate where the heat capacity is 𝐶 = 𝐶(𝑇 ) = 𝜌(𝑇 )𝑐(𝑇 ).

Introducing Eq. (55) in (54), the strong form becomes

𝐶�̇� − ∇ ⋅ (𝑘∇𝑇 ) = �̇� + ̇𝑚𝑒𝑐ℎ 𝑜𝑛 𝛺 (56)

together with the prescribed thermal boundary conditions.

3.2. Weak form

Introducing 𝛿𝑇 as a virtual temperature field and integrating
Eq. (56) over the domain 𝛺, the weak form of the energy balance is
written as

∫𝛺
(𝛿𝑇𝐶�̇� )𝑑𝛺 + ∫𝛺

(𝑘∇𝛿𝑇 ⋅∇𝑇 )𝑑𝛺 = ∫𝛺
[𝛿𝑇 (�̇�+̇𝑚𝑒𝑐ℎ)]𝑑𝛺 +∫𝛤𝑞

(𝛿𝑇 𝑞)𝑑𝛤

(57)

where the divergence theorem has been applied to the second term.
The domain is closed by a smooth boundary 𝛤 , such that 𝛤 = 𝛤𝑇 ∪ 𝛤𝑞
and 𝛤𝑇 ∩ 𝛤𝑞 = ⊘, where 𝛤𝑇 and 𝛤𝑞 are the boundaries with prescribed
temperatures and fluxes respectively. It is assumed that the prescribed
temperatures vanish at the boundary 𝛤𝑇 . The prescribed heat fluxes in
the boundary 𝛤𝑞 are noted 𝑞.

The initial conditions are defined in terms of the initial temperature
field at 𝑡 = 0, where 𝑇 (𝑡 = 0) = 𝑇0.

3.3. FE approximation

Similarly to the mechanical problem, the domain 𝛺 is discretized
in a FE partition such that 𝛺 = ∪𝛺𝑒, with the temperature and virtual
temperature fields approximated according to the Galerkin method

𝑇 =̃ �̂� = 𝐍𝑇𝐓
𝛿𝑇 =̃ 𝛿�̂� = 𝐍𝑇 𝛿𝐓

(58)

where 𝐓 and 𝛿𝐓 are the finite element nodal temperature and virtual
temperature vectors, respectively, and 𝐍𝑇 is the matrix containing the
interpolation function adopted.

Introducing the FE discrete approximations into the continuous
weak form of Eq. (57), results in

∫𝛺
𝛿𝐓𝑇𝐍𝑇𝑇𝐶𝐍𝑇 �̇�𝑑𝛺 + ∫𝛺

𝛿𝐓𝑇𝐍𝑇𝑇𝐆
𝑇 𝑘𝐆𝐍𝑇𝐓𝑑𝛺

= ∫𝛺
𝛿𝐓𝑇𝐍𝑇𝑇 (�̇� + ̇𝑚𝑒𝑐ℎ)𝑑𝛺 + ∫𝛤𝑞

(𝛿𝐓𝑇𝐍𝑇𝑇 𝑞)𝑑𝛤 ∀𝛿𝐓
(59)

and the choice of the virtual field is arbitrary, thus the Galerkin
approximation of Eq. (59) is

𝐍𝑇𝑇𝐶𝐍𝑇 𝑑𝛺�̇� + 𝐁𝑇𝑇 𝑘𝐁𝑇 𝑑𝛺𝐓 = 𝐍𝑇𝑇 (�̇� + ̇𝑚𝑒𝑐ℎ)𝑑𝛺 + (𝐍𝑇𝑇 𝑞)𝑑𝛤
∫𝛺 ∫𝛺 ∫𝛺 ∫𝛤𝑞
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Fig. 2. Double clamped rectangular beam: Pressure in [Pa]. Plane-stress (a)–(c). Plane-strain (d)–(f ).
Fig. 3. Double clamped rectangular beam: Pressure in [Pa] at the left support.
Plane-stress (a)–(c). Plane-strain (d)–(f ).

(60)

with 𝐁𝑇 = 𝐆𝐍𝑇 .

3.4. Thermo-mechanical coupling

The coupled thermo-mechanical problem considered in this work is
established in strong form by Eqs. (23) and (56). The corresponding
discrete weak form of the problem being numerically computed is
determined by Eqs. (43) and (60).

The time integration scheme adopted in Refs. [72–75] is consid-
ered to solve the discrete problem in time. The two sub-problems,
mechanical and thermal, are solved sequentially following a staggered
incremental procedure. When the mechanical dissipation is much lower
than the energy input from the heat source, the thermo-mechanical
coupling is weak, and a staggered solution of the thermal and the
mechanical sub-problems is preferred instead of a monolithic approach.

For every time increment 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 between time steps 𝑡𝑛
and 𝑡𝑛+1, to obtain the solution at time 𝑡𝑛+1, first the mechanical sub-
problem is calculated with all the state variables of the solution known
at time instant 𝑡𝑛. This results in an intermediate solution, which is then
used as a starting point to compute the thermal problem. According to
the considerations in Ref. [74], the proposed algorithm does not need
an iterative loop over the two sub-problems within the same time-step
to ensure the convergence of the solution.
6

Due to the nonlinearity of the mechanical sub-problem, which
includes J2-damage and J2-plasticity constitutive laws, an iterative
Picard algorithm is introduced for its solution. Also, temperature-
dependent mechanical properties are introduced, which are determined
at 𝑡𝑛+1 using the temperature computed at 𝑡𝑛.

As the thermal sub-problem in Eq. (60) involves the time derivatives
of the temperature, an implicit Euler scheme is adopted for its solu-
tion. Temperature-dependent thermal properties are introduced as well,
making the problem nonlinear. However, the resulting thermal sub-
problem is solved in an incrementally linear manner. For this, material
properties are also computed at time step 𝑡𝑛+1 using the temperature
field obtained at 𝑡𝑛.

For additional details on the thermo-mechanical coupling,
Refs. [72–75] are recommended.

4. Constitutive laws

The mixed 𝐮∕𝐞∕𝑝 formulation requires the split of the constitutive
law into the volumetric and deviatoric parts as shown in Eqs. (8) and
(9). This section introduces the J2-damage and J2-plasticity laws used
in this work to model the nonlinear material behavior in structural
failure problems. The damage and yield surfaces of both models are
described by the Von Mises criterion. Both models are comprehensibly
described in Ref. [35]. For additional details on the constitutive laws,
Ref. [35] is recommended.

4.1. J2-damage

In this section, the J2-damage model is presented. An isotropic dam-
age model is considered for the deviatoric secant constitutive matrix
𝐂𝑑𝑒𝑣

𝐂𝑑𝑒𝑣 = (1 − 𝑑𝑠)𝐂𝑑𝑒𝑣0 (61)

where 𝐂𝑑𝑒𝑣0 is the initial elastic deviatoric constitutive matrix and 𝑑𝑠
is a damage variable modeling the degradation of the material, which
ranges 0 ⩽ 𝑑𝑠 ⩽ 1.

The effective deviatoric-stress �̄� is defined as �̄� = 𝐂𝑑𝑒𝑣0 𝐞 and the
corresponding equivalent effective deviatoric-stress 𝜏 is

𝜏 =
√

3
2
‖�̄�‖ =

√

3
2
[

�̄�𝑇 �̄�
]1∕2 (62)

The damage criterion, 𝑑 , is

𝑑 = 𝜏 − 𝑟(�̄�) ⩽ 0 (63)

where 𝑟 is the current damage threshold. Its initial value is the tensile
strength of the material, 𝑟0 = 𝜎𝑦. According to the Kuhn–Tucker opti-
mality and consistency conditions, the value of the damage threshold
at time 𝑡 is explicitly updated as

𝑟(�̄�) = max(𝑟 ,max 𝜏(𝑡)) 𝑡 ∈ [0, 𝑡] (64)
0
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Fig. 4. Double clamped rectangular beam: Vertical reaction (half ) vs vertical displacement. (a) Plane-stress. (b) Plane-strain.
Fig. 5. Double clamped rectangular beam: J2-strains. Plane-stress (a)–(c). Plane-strain (d)–(f ).
Fig. 6. Double clamped rectangular beam: J2-strains detail at the left support.
Plane-stress (a)–(c). Plane-strain (d)–(f ).

The evolution of the internal damage variable is defined by

𝑑𝑠 = 𝑑𝑠(𝑟) = 1 −
𝑟0
𝑟
exp

(

−2𝐻𝑆

(

⟨𝑟 − 𝑟0⟩
𝑟0

))

(65)

where 𝐻𝑆 is a positive softening parameter controlling the rate of
material degradation and ⟨⋅⟩ are the Macaulay brackets such that ⟨𝑥⟩ =
𝑥 if 𝑥 ⩾ 0, ⟨𝑥⟩ = 0 if 𝑥 < 0.

The mechanical dissipation ̇𝑚𝑒𝑐ℎ for this constitutive law is

̇ = 𝜓 �̇� = 1 𝐞𝑇𝐶𝑑𝑒𝑣𝐞�̇� ≥ 𝟎 (66)
7

𝑚𝑒𝑐ℎ 0 𝑠 2 0 𝑠
where 𝜓0 =
1
2 𝐞
𝑇𝐶𝑑𝑒𝑣0 𝐞 is the initial elastic strain energy density per unit

of volume of the undamaged material and �̇�𝑠 is the derivative of the
damage 𝑑𝑠 with respect to time.

The total dissipation along the process is [35]

𝑚𝑒𝑐ℎ = ∫

𝑡=∞

𝑡=0
̇𝑚𝑒𝑐ℎ𝑑𝑡 = ∫

∞

0

1
2
𝐞𝑇𝐶𝑑𝑒𝑣0 𝐞�̇�𝑠𝑑𝑡 = 𝑊 𝑒

0 +
𝑊 𝑒

0
𝐻𝑆

(67)

where𝑊 𝑒
0 is the maximum energy per unit volume that can be absorbed

up to the elastic limit without permanent damage. For the case of
isotropic materials, 𝑊 𝑒

0 = 1
2
(𝜎𝑦)2

3𝐺0
, 𝐺0 being the initial elastic shear mod-

ulus. The previous expression of 𝑚𝑒𝑐ℎ can be related to the fracture
energy 𝑓 as [76,77]

𝑚𝑒𝑐ℎ =
𝑓
𝑏

(68)

where 𝑏 is the bandwidth of the strain localization, which is equal to
2ℎ for the 3-field element, ℎ being the FE size. This results in

𝐻𝑆 =
�̄�𝑆𝑏

1 − �̄�𝑆𝑏
(69)

�̄�𝑆 =
(𝜎𝑦)2

6𝐺0𝑓
(70)

Eqs. (64)–(66) guarantee the irreversible nature and the positiveness
of the dissipation.

4.2. J2-plasticity

Herein, the J2-plasticity model is presented. The deviatoric plastic
strains 𝐞𝑝 are introduced as

𝐬 = 𝐂𝑑𝑒𝑣𝐞𝑒 = 𝐂𝑑𝑒𝑣(𝐞 − 𝐞𝑝) (71)
0 0
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Fig. 7. Double clamped rectangular beam: J2-strains detail at the center of the beam. Plane-stress (a)–(c). Plane-strain (d)–(f ).
Fig. 8. Double clamped I-shaped beam: Problem setting.

where 𝐂𝑑𝑒𝑣0 is the deviatoric part of the elastic constitutive matrix and
𝐞𝑒 are the deviatoric elastic strains computed as

𝐞𝑒 = 𝐞 − 𝐞𝑝 (72)

The constitutive equation can be rewritten in terms of the secant
deviatoric constitutive matrix

𝐬 =
[

𝐂𝑑𝑒𝑣0 −
(𝐂𝑑𝑒𝑣0 𝐞𝑝)(𝐂𝑑𝑒𝑣0 𝐞𝑝)𝑇

𝐞𝑇𝐂𝑑𝑒𝑣0 𝐞𝑝

]

𝐞 = 𝐂𝑑𝑒𝑣𝐞 (73)

where 𝐂𝑑𝑒𝑣 is the deviatoric part of the secant nonlinear constitutive
tensor, which is symmetric by construction.

Taking into account that, for an isotropic material, 𝐂𝑑𝑒𝑣0 = 2𝐺0𝐘,
that 𝐞 = 𝐘𝐞 and that 𝐞𝑝 is also purely deviatoric i.e. 𝐞𝑝 = 𝐘𝐞𝑝, Eq. (73)
can be simplified to

𝐬 = 2𝐺0

[

𝐉 − 𝐞𝑝(𝐞𝑝)𝑇

𝐞𝑇 𝐞𝑝

]

𝐞 (74)

Using the equivalent deviatoric-stress, 𝜏, defined in Eq. (62), the
plastic yield surface, 𝑝, is defined as

𝑝 = 𝜏 − 𝑟𝑝(𝑞) ⩽ 0 (75)

where 𝑟𝑝(𝑞) are the admissible deviatoric-stresses, and 𝑞 is a stress-like
internal variable that controls the softening of the model. The deviatoric
stress threshold is

𝑟𝑝(𝑞) = 𝜎𝑦 − 𝑞(𝜉) (76)

where 𝜎𝑦 is the initial uniaxial stress threshold, 𝜉 is the equivalent
plastic strain and 𝑞(𝜉) is the softening function, that in this work is
exponential:

𝜉 =
√

2
3
‖𝐞𝑝‖ (77)

𝑞(𝜉) = 𝜎𝑦 exp
(

−2𝐻
𝜎𝑦

𝜉
)

for 0 ⩽ 𝜉 ⩽ ∞ (78)

where 𝐻 is the softening parameter.
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The plastic evolution laws are

�̇�𝑝 = �̇�𝐧 (79)

�̇� = �̇�
√

2
3

(80)

where �̇� is the plastic multiplier determined by the Kuhn–Tucker op-
timality and consistency conditions and 𝐧 is the normal to the yield
surface, defined by

𝐧 =
𝜕𝑝
𝜕𝐬

= 𝐬
‖𝐬‖

(81)

The rate of plastic work is ̇𝑚𝑒𝑐ℎ = 𝐬 ∶ �̇�𝑝 and the total deviatoric
plastic work along the softening process is

𝑚𝑒𝑐ℎ = ∫

𝑡=∞

𝑡=0
̇𝑚𝑒𝑐ℎ𝑑𝑡 = ∫

∞

0
𝑞(𝜉)𝑑𝜉 =

𝜎2𝑦
2𝐻

(82)

Also, the dissipated energy in a softening process can be related to
the fracture energy 𝑓 as

𝑚𝑒𝑐ℎ =
𝑓
𝑏

=
𝑓
2ℎ

(83)

where 𝑏 is the bandwidth of the strain localization, that in this work is
2ℎ for the 3-field element, ℎ being the mesh size.

Finally, the softening parameter 𝐻 can be computed using Eq. (82)
and (83) as

𝐻 =
𝜎2𝑦
2𝑓

𝑏 = 2ℎ�̄� (84)

�̄� =
𝜎2𝑦
2𝑓

(85)

The parameter 𝐻 depends on the mesh resolution ℎ and the material
properties.

5. Numerical simulations

In this section, the enhanced accuracy and the mesh independence
of the mixed 𝐮∕𝐞∕𝑝 formulation are assessed in isothermal (Section 5.1)
and non-isothermal (Sections 5.2–5.5) failure problems. Temperature-
dependent properties are considered. The simulations include the J2-
damage and J2-plasticity constitutive models, introducing the isochoric
behavior into the problem; thus the requirement of using a FE approach
such as 𝐮∕𝐞∕𝑝, capable of resolving incompressible conditions. Several
FE discretizations (triangular, quadrilaterals and hexahedral elements)
are used to show the generality of the formulation.



Engineering Structures 261 (2022) 114213C.A. Moreira et al.
Fig. 9. Double clamped I-shaped beam: Pressure in [Pa].
𝜎

Fig. 10. Double clamped I-shaped beam: Vertical reaction (half ) vs vertical
displacement.

The nonlinear problem is solved incrementally in a (pseudo) time
step-by-step manner; at each step a staggered scheme is used for the
mechanical and the thermal problems. An iterative Picard algorithm
is employed in the mechanical problem. A convergence based on the
norm of the residuals of Eqs. (43) with a tolerance of 10−5 is adopted
at each time step. The thermal problem is solved in a linear incremental
manner and an implicit backward Euler scheme is adopted for its
resolution.

The mixed 𝐮∕𝐞∕𝑝 formulation is compared with the 𝐮∕𝑝 FE in
terms of result accuracy, collapse mechanism prediction and numerical
stability. The approximations adopted are Q1Q1 and P1P1 for 𝐮∕𝑝 and
Q1Q1Q1 and P1P1P1 for 𝐮∕𝐞∕𝑝 in the mechanical simulation and Q1
and P1 for the thermal field, depending on the FE discretization.

The stabilization constants defined in Eq. (A.4) of the Appendix are
taken as 𝐿0 = 1.0, 𝑐𝑢 = 1.0, 𝑐𝑝 = 0.0 and 𝑐𝑒 = 0.1 for both the 𝐮∕𝑝 and
𝐮∕𝐞∕𝑝 formulations.

An enhanced version of the finite element code COMET (see [78]),
developed by the authors, is used to solve the numerical simulations.
The pre and post process is done with GiD, a software developed at the
International Center for Numerical Methods in Engineering (CIMNE)
[79]. Paraview [80] is used for post processing as well.

5.1. Double clamped beam

5.1.1. Rectangular beam
In this section the development of plastic hinges is studied in a

clamped–clamped beam in plane-stress and plane-strain conditions. In
the present examination, the performance of the standard, 𝐮∕𝑝 and
𝐮∕𝐞∕𝑝 FE formulations are investigated when used in conjunction with
an isochoric (incompressible) nonlinear constitutive model. The numer-
ical simulations compare their solution in an isothermal setting. The
geometry and loading conditions of the beam are shown in Fig. 1.
9

The collapse mechanism predicted from the limit analysis of the
beam consists in the formation of two plastic hinges at the clamped
ends and, ultimately, of a third plastic hinge at the center of the beam.

The constitutive model adopted is elasto-perfect J2-Plasticity with
a Young’s modulus of 𝐸 = 200 [GPa], Poisson’s ratio of 𝜈 = 0.3 and
an uniaxial yield stress threshold of 𝜎𝑦 = 500 [MPa]. For the plane-
stress assumption, where the transversal stress is 𝜎𝑧 = 0, the theoretical
ultimate distributed load is 𝑝𝑢 = 4000 [kN∕m] and the vertical reaction
in each end is 10,000 [kN]. For the plane-strain case, the influence of
𝜎𝑧 ≠ 0 reflects on the perceived yield threshold, �̄�𝑦 ≥ 𝜎𝑦 [81], which,
in the case of the Von Mises criterion, is given by

̄𝑦 =
𝜎𝑦

√

1 − 𝜈 + 𝜈2

so, the corresponding plane-strain condition ultimate load is 𝑝𝑢 =
4500 [kN∕m] resulting in a vertical reaction of 11,250 [kN] in each end.

A structured quadrilateral mesh is adopted and, due to the symme-
try of the problem, half of the domain is considered, with a total of
5494 elements and a FE size of ℎ = 0.015 [m]. An arc-length strategy
is used in the simulations, controlling the displacement at the top
midpoint.

Fig. 2 shows the pressure computed in plane-stress and plane-strain
conditions for the standard, 𝐮∕𝑝 and 𝐮∕𝐞∕𝑝 FEs. The standard element
presents spurious oscillations of the pressure field while the mixed
formulations provide a smooth (correct) solution. Fig. 3 shows the
detail of the pressure at the left support where the poor performance
of the standard element is noticeable.

Fig. 4 shows the vertical reaction of one clamped end versus the
vertical displacement of the mid-span. In this simulation without ma-
terial softening, the two mixed FE formulations coincide while the
standard formulation presents a spurious hardening behavior due to
the volumetric locking that takes place in the computed solution. This
shows the inability of the standard FE formulation in reproducing
nonlinear isochoric behavior such as J2-plasticity.

Fig. 5 shows the J2-strains for the three FEs formulations. It can
be seen that the plastic hinges at the clamped ends form an arch that
connects the top and bottom faces of the beam. Close to the clamped
end, a region with no strain localization that extends towards the
center of the beam can be observed. The support and central hinges
are detailed in Figs. 6 and 7, respectively.

The numerical results in terms of load capacity in Fig. 4 for plane-
stress are higher than the theoretical results derived from the plastic
limit analysis. This is because of the assumption that the plastic hinge
develops exactly at the clamped face of the beam, which limit analysis
translates into assuming that the effective span coincides with the
geometric span. Fig. 5 shows that this is not the case; a dead-region
is formed, which decreases the value of the effective span length,
considered to be the distance from hinge to hinge, and increases the
ultimate load. In the plane stress case, the maximum vertical reaction
in 𝐮∕𝐞∕𝑝 is 11,440 [kN], for the 𝐮∕𝑝 is 11,510 [kN] and for the standard
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Fig. 11. Double clamped I-shaped beam: J2-strains.
Fig. 12. Double clamped I-shaped beam: J2-strains detail at the left clamped-end.
Fig. 13. Semicircular arch: Problem setting.

formulation is 12,640 [kN] at 𝛿𝑦 = 0.20 [m]; the theoretical one when
adopting a reduced effective span of 𝐿𝑒𝑓𝑓 = 4.52 [m], as observed in the
numerical solution, is 11,060 [kN].

5.1.2. I-shaped beam
In the following, the numerical simulation of the formation of

plastic hinges is considered in an I-shaped beam. The goal of this
section is to analyze the phenomenon in a 3D geometry, where the cross
section of the beam does not have constant width.

Fig. 8 shows the geometry and boundary conditions of this case. The
analysis is performed using elasto-perfect J2-plasticity, with a Young
modulus 𝐸 = 200 [GPa], Poisson’s ratio of 𝜈 = 0.3 and an uniaxial
yield stress threshold 𝜎𝑦 = 245 [MPa]. Considering the geometrical span
length 𝐿 = 2.5 [m], as shown in Fig. 8, the theoretical ultimate load of
the beam is 𝑝 = 61.47 [kN∕m]. This results in a vertical reaction on each
end of 𝑅 = 76.8 [kN].
10
Fig. 14. Semicircular arch: Collapse mechanism in an isothermal setting in dashed line.
Source: Adapted from [81].

Due to symmetry, half of the problem is considered. The simulation
is performed using an arc-length strategy controlling the vertical dis-
placement at the beam top midpoint. The domain is discretized using
a structured mesh of hexahedral elements of size ℎ = 5 ⋅ 10−3 [m], with
a total of 25,000 elements. At one end the beam is clamped and at the
mid-span symmetry conditions are applied.

Fig. 9 shows the pressure for the three FEs, where it can be seen that
the solution obtained by the standard formulation suffers from spurious
oscillations. Fig. 10 shows the evolution of the vertical reaction at the
left clamped end with the vertical displacement at the mid-span. In
this simulation without material softening, both mixed formulations
reach similar final bearing capacities, with the 𝐮∕𝐞∕𝑝 value being
83.1 [kN] and the 𝐮∕𝑝 value 83.4 [kN], while the standard FE produces
a much stiffer solution due to the volumetric locking originated by the
incapability of the standard element to address the material isochoric
(incompressible) behavior.

Fig. 11 presents the J2-strains for the three formulations where a
slightly different strain distribution on the web is observed between
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Fig. 15. Semicircular arch: (a) Heat source increment over time. Evolution of the (b) stress threshold and (c) specific heat capacity with temperature.
Fig. 16. Semicircular arch: Reference model (isothermal) failure mechanism for 𝛿𝑦 = 1.6 [m].
the mixed formulations. The J2-strains for the 𝐮∕𝑝 element are more
uniform throughout the web height. Fig. 12 provides a zoom at the
clamped end for a total displacement of |𝛿| = 0.30 [m]. The 𝐮∕𝑝
formulation has a lower accuracy in terms of strains and is not able to
capture the distribution observed in the 3-field solution. The standard
formulation presents a much broader area where the J2-strains develop,
Fig. 11, but the J2-strains magnitude are much smaller than the mixed
formulations values, Fig. 12, due to the volumetric locking of the
standard element.

It can be seen in Fig. 12 how also in this case a dead region where
no localization occurs develops next to the clamped face of the beam.
This reduces the effective span length of the beam to 𝐿𝑒𝑓𝑓 = 2.45 [m].
The resulting ultimate load is 𝑝 = 64 [kN∕m], and the expected vertical
reaction at each beam end (half vertical reaction) is 𝑅 = 80 [kN]. The
load capacities observed in Fig. 10 when using the 𝐮∕𝑝 and 𝐮∕𝐞∕𝑝 FEs
agree with these values.
11
5.2. Semicircular arch

In the next simulation, a semicircular arch in plane-stress conditions
is considered with temperature-dependent material properties. A heat
source is placed at one end of the arch, weakening the bearing capacity.
The aim of this example is to assess the difference in the failure
mechanisms provided by the 3-field and 𝐮∕𝑝 solutions.

The arch is clamped in both ends and has an outer radius 𝑅 = 10 [m],
a thickness 𝑡 = 1.0 [m], a width 𝜔 = 0.5 [m] and is subjected to a vertical
displacement 𝛿𝑦 = 2.5 [m] downwards with a heat source placed on
the right clamping (see Fig. 13). Fig. 13 shows the point 𝐴 chosen to
measure the evolution of the temperature.

An isothermal reference case is also considered to assess the in-
fluence of the temperature on the failure mechanism. The structure,
if not subjected to temperature effects, fails with the formation of
symmetrical hinges [81] as presented in Fig. 14.

The constitutive model adopted is the isotropic J2-Damage and the
material properties are described in Table 2. The heat load is described
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Table 2
Semicircular arch: Material properties.

Property Value

Young’s Modulus [GPa] 200
Fracture Energy [MJ/m2] 60
Density [kg/m3] 7800
Thermal Conductivity [W/(m ◦C)] 45
Thermal Expansion coefficient [m/(m ◦C)] 12 ⋅10−6

in Fig. 15(a). The yield stress threshold, 𝜎𝑦, and the specific heat
capacity, 𝑐, vary in function of the temperature, see Fig. 15(b) and (c).
These evolution functions of the material temperature-dependency are
taken based on the behavior reported for steel in Ref. [82].

A structured quadrilateral mesh with 16 elements through the thick-
ness is adopted, resulting in a total of 8000 elements with an average
size of ℎ = 0.0625 [m].

Fig. 16 shows the failure mechanism for the isothermal case, compa-
rable to the expected behavior in Fig. 14. Fig. 17 details the evolution
of the intermediate plastic hinge in four different time steps. The
lack of accuracy of the 𝐮∕𝑝 formulation introduces stress locking,
precludes the achievement of a localized solution and exhibits the
banding phenomenon in Fig. 17c (right), in contrast to the 𝐮∕𝐞∕𝑝 result.
This increases the mechanical dissipation 32.2% for the 𝐮∕𝑝 element
compared to the 3-field solution, as can also be seen in the reaction vs
displacement plot in Fig. 18(a). This also produces an overestimation
of the failure load by 𝐮∕𝑝 of 2.29% with respect to the 𝐮∕𝐞∕𝑝, as can
be appreciated in Fig. 18(a).

Fig. 19 shows the unsymmetrical failure mechanism induced by the
heat source positioned at the right hand side base for the mixed 𝐮∕𝐞∕𝑝
and the mixed 𝐮∕𝑝. The right base of the arch loses strength at a faster
rate which produces the unsymmetrical failure mechanism. Although
both solutions are unsymmetrical, a large difference is observed be-
tween both collapse mechanisms. The 𝐮∕𝐞∕𝑝 element yields a sliding
mechanism, due to the loss of strength at the arch base, while the 𝐮∕𝑝
displays a stiffer solution, resulting from the stress locking observed at
the hinges.

Fig. 18 presents the vertical reaction vs displacement plot for the
𝐮∕𝑝 and 𝐮∕𝐞∕𝑝 formulations (recall that the reference case is isothermal)
and the temperature evolution at point 𝐴. The differences between the
3-field and the 𝐮∕𝑝 solutions are caused by the formation of a different
failure mechanism and the over dissipation exhibited by the 𝐮∕𝑝, both
originated from the poor evaluation of the stress/strain field. Note
also that the resulting bearing capacities are different: 55, 396 𝑘𝑁 for
the 𝐮∕𝑝 and 53, 720 𝑘𝑁 for the 𝐮∕𝐞∕𝑝, a 3.12% difference. The heat
increase at the base barely affects the peak load value with respect
to the isothermal case, but the resulting nonlinear structural response
is greatly modified. The measured temperature increase at point 𝐴,
presented in Fig. 18(b), depends on the mechanical dissipation and
captures the instant when the localization occurs, when the peak value
is attained. The hinge is formed sooner in the 𝐮∕𝐞∕𝑝 solution, denoting
that the 𝐮∕𝑝 has a stiffer behavior and delays the localization process.

5.3. Temperature induced failure - 3D frame

The following example is a 3D frame subjected to self-weight. The
structural failure is induced by an incremental heat source placed on
the right portion of the beam–column connection, shown in Fig. 20 and
defined in Fig. 21(a). The frame has a total height of 3 [m] with a free
span of 4.8 [m]. The heat-affected area is a portion of the beam with
1.2 [m] in length from the right beam–column connection. The beam
and column cross-sections are presented in Fig. 20.

The constitutive model is perfect J2-Plasticity, Young’s modulus
is 𝐸 = 200 [GPa], the material density is 𝜌 = 7800 [kg∕m3] and the
thermal expansion coefficient is 𝛼 = 12 ⋅ 10−6 [m∕(m ◦C)]. The yield
stress threshold, 𝜎 , the specific heat capacity, 𝑐, and the thermal
12

𝑦

Fig. 17. Semicircular arch: Reference model (isothermal) detail of the development of
the intermediate plastic hinge. (a) 𝛿𝑦 = 0.10 [m]. (b) 𝛿𝑦 = 0.30 [m]. (c) 𝛿𝑦 = 1.20 [m]. (d)
𝛿𝑦 = 2.5 [m].

conductivity, 𝑘, are temperature dependent, as shown in Fig. 21 (b)–
(d). The evolution laws are taken based on the behavior reported in
Ref. [82]. The simulation is performed with a time step of 20 [s] in a
total of 10,000 [s] and a structured hexahedral mesh with element size
ℎ = 0.025 [m] (39,936 elements in total).

Fig. 22 shows the evolution of the vertical reaction at each column.
On the one hand, the 𝐮∕𝑝 simulation stops at 3880 [s], when the
temperature in the heated region reaches 796 ◦C, due to the degradation
of the strength of the beam in the heated zone. On the other hand, the
𝐮∕𝐞∕𝑝 formulation manages to conclude the analysis successfully.

Figs. 23(a)–(b) shows the J2-strains developed by the mixed 𝐮∕𝑝
and 𝐮∕𝐞∕𝑝 formulations a few time-steps before the mixed 𝐮∕𝑝 for-
mulation fails. This is caused by the lack of local convergence of the
𝐮∕𝑝 formulation, which induces a premature shear mechanism at the
heated beam–column connection, observed in the following time-step
in Fig. 23(c)–(d). On the other hand, this does not happen in the
enhanced accuracy mixed 𝐮∕𝐞∕𝑝 formulation and the analysis follows
on until the final time-step 𝑡 = 10, 000 [s].

5.4. The Prandtl Punch test

The Prandtl Punch test consists of a rigid punch pressed into a semi-
infinite domain in plane-strain conditions. The geometry considered is
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Fig. 18. Semicircular arch: (a) Reaction vs displacement curves and (b) temperature evolution over time at point 𝐴.
Fig. 19. Semicircular arch: Failure mechanism with heated base for 𝛿𝑦 = 2.50 [m].
Fig. 20. 3D frame with heat source at the right quarter portion of the beam–column
connection: Problem setting.
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a 4 [m] × 2 [m] (x × y) region with a rigid punch of size 1.0 [m] centered
at the top portion of the domain (see Fig. 24). Due to the symmetry of
the problem only half of the domain is considered.

Also, in this section, artificial properties are considered, to bet-
ter demonstrate the capacities of both mixed FE formulations. The
constitutive model is J2-Damage with a high value for the fracture
energy (𝐺𝑓 ⟶ ∞). The material properties are Young’s Modulus,
𝐸 = 10 [MPa], density, 𝜌 = 7800 [kg∕m3], Poisson’s ratio 𝜈 = 0.5 (incom-
pressible elastic behavior), specific heat capacity, 𝑐 = 5⋅10−5 [J∕(kg ◦C)],
and the evolution of the yield-threshold with respect to the temper-
ature is shown in Fig. 25. Two simulations, one with null thermal
conductivity and one including an external heat source, are performed
in this section. In this problem with elastic incompressible behavior,
the pressure stabilization constant is set to 𝑐𝑝 = 0.1.

Computations are conducted using a 14,608 unstructured triangular
element mesh in the first case and a 6400 quadrilateral element dis-
cretization in the second one, with the element size being ℎ = 0.025 [m]
in both meshes. A downward vertical displacement of 𝛿𝑦 = 0.20 [m] is
applied to the rigid punch area in 500 [s] (500 steps).

The failure mechanism in an isothermal setting is shown in Fig. 26
with critical angles of 𝜃 = ±45◦ from the edge of the punch with the
horizontal plane. The analytical peak load (yield load), 𝑞, for the rigid
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Fig. 21. 3D frame: (a) Heat source increment over time. (b) Uniaxial stress threshold, (c) Specific heat capacity, (d) Thermal conductivity, evolution with the temperature.
Fig. 22. 3D frame: Evolution curves of the bearing capacity of the columns.

Fig. 23. 3D frame: J2-strains at the beam–column connection (a)–(b) at the time step
𝑡 = 3820 s and (c)–(d) at time step 𝑡 = 3880 s, before the 𝐮∕𝑝 solution fails.

punch in an isothermal setting is given by [83]:
( )
14

𝑞 = 4𝑎 1 + 𝜋
2

𝜏𝑝𝑠
Table 3
Prandtl’s Punch test: Peak load relative errors for the
half-domain in an isothermal setting at 20 ◦C.

Peak load [N] Error [%]

𝐮∕𝐞∕𝑝 15,257 2.79
𝐮∕𝑝 15,264 2.84

where 𝜏𝑝𝑠 is the yield stress threshold in pure shear, defined as a
function the uniaxial yield stress threshold, 𝜎𝑦, as 𝜏𝑝𝑠 = 𝜎𝑦

√

3
and 2𝑎 is

the width of the punch (2𝑎 = 1 [m]). For a stress threshold 𝜎𝑦 (20 ◦C) =
10 [kPa], the peak load for the half-domain is 𝑞1∕2 = 14, 842.5 [N∕m].

Table 3 presents the peak load for the isothermal setting of the
half-domain computed by both FE formulations.

5.4.1. Case 1: Numerical simulation with null thermal conductivity
The objective of this simulation is to illustrate a case where the

temperature increase is produced exclusively by the mechanical dissi-
pation. The thermal conductivity is set to 𝑧𝑒𝑟𝑜 to emulate null thermal
inertia. In this way, mechanical dissipation increases the temperature
locally, without thermal conduction. Point 𝐴, shown in Fig. 24, is
chosen to evaluate the evolution of the J2-stresses and the temperature,
presented in Fig. 27. The 𝐮∕𝑝 element produces a higher mechanical
dissipation [35], resulting in a higher temperature increase, Fig. 27a,
affecting the computed yield threshold and reducing the J2-stresses
observed at point 𝐴, Fig. 27b.

In the isothermal setting, both mixed formulations reach the yield
threshold value, 𝜎𝑦 (20 ◦C) = 10 [kPa], for point 𝐴. On the other hand,
the peak J2-stress values reached in the non-isothermal analysis are
𝜎𝑦 = 9.51 [kPa] and 𝜎𝑦 = 8.94 [kPa] for the mixed 3-field and 𝐮∕𝑝
formulations, respectively. The J2-stresses decrease until they reach the
final value of 𝜎𝑦 = 6.95 [kPa] and 𝜎𝑦 = 6.65 [kPa] for the 3-field and
𝐮∕𝑝, respectively.

Fig. 28 shows snapshots of the failure mechanism (a–b — near the
peak load; c–d at the final step) for both formulations. Although the
failure mechanisms in both cases are similar, the 𝐮∕𝑝 formulation shows
some mesh sensitivity and presents a vertical slip line that does not
develop in the 3-field.

5.4.2. Case 2: Numerical simulation with an external heat source
The following case introduces an external heat source in the prob-

lem and the thermal conductivity of the domain is set to
2.5 ⋅ 10−3 [W∕(m◦C)]. The resulting effects on the failure mechanism,
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Fig. 24. Prandtl’s Punch test: General problem setting and meshes.
Fig. 25. Prandtl’s Punch test: Temperature-dependency of the uniaxial stress threshold.

Fig. 26. Prandtl’s Punch test: Collapse mechanism in an isothermal setting.

peak load and bearing capacity are explored. The heat source is
positioned in the rigid punching area at a constant temperature of
150 [◦C].

Fig. 29 shows snapshots of the failure mechanism (a–b — near
the peak load; c–d — at the final step) for both formulations. The
increase of temperature in the rigid footing area changes the failure
mechanism with respect to the isothermal case, altering its depth,
which eventually emerges closer to the heated area. Note that, due
to the effect of temperature, the failure mechanism does no longer
present a critical angle 𝜃 of 45◦. Fig. 30(a) shows the difference in
terms of strains between the computations of both formulations at
the end of the simulation. Note that the difference is computed as
[𝐮∕𝐞∕𝑝−𝐮∕𝑝], where blue values mean that the 𝐮∕𝑝 solution has higher
strains and red values otherwise. This represents the superposition of
15
Table 4
Prandtl’s Punch test — case 2: Difference between isother-
mal and non-isothermal critical angles on the slip-line and
computed peak-load in the non-isothermal case.

Case 𝜟𝜽 𝒒 [N]

𝐮∕𝑝 −13.24◦ 10,472
𝐮∕𝐞∕𝑝 −7.69◦ 11,070

the 𝐮∕𝑝 and 𝐮∕𝐞∕𝑝 mechanisms in blue and red, respectively. It can be
seen how the two formulations do not produce the same results due to
the poor precision of the 𝐮∕𝑝 element. Fig. 30(b) shows the reaction vs
displacement curves, where the effect of the thermal softening induced
by the temperature-dependency of the yield stresses, as defined in
Fig. 25, can be observed for both formulations. The reference curves
are obtained from simulations without a temperature-dependent yield
threshold. The higher peak-load observed in the 3-field is a consequence
of the broader confined region below the rigid footing compared to the
𝐮∕𝑝 formulation.

Table 4 shows the change in the critical angles with respect to the
reference case (𝜃 = 45◦) caused by the increase of temperature on the
rigid footing. It also presents the reduced peak loads which are to be
compared to the isothermal simulation results presented in Table 3.

Note that the 3-field formulation is able to produce the original
Prandtl collapse mechanism (a slip-line), while the mixed 𝐮∕𝑝 intro-
duces a vertical punching line to the slip-line mechanism in both sets
analyzed.

5.5. Singly perforated thin-walled cylinder

The next example is a thin-walled cylinder 0.6 [m] × 3 [m] ×
0.02 [m] (outer diameter × height × thickness) with a perforation of
0.04 [m] × 0.04 [m] × 0.02 [m] (width × height × thickness) subjected to
vertical stretching. The cylinder is heated at the perforation, as shown
in Fig. 31, in an area of dimensions 0.12 [m] × 0.12 [m] × 0.02 [m]
(width × height × thickness). The heat load is described in Fig. 32(a).

The constitutive model adopted is the J2-Damage with softening
and the material properties are presented in Table 5. One fourth of the
domain is considered due to the double symmetry of the problem (see
Fig. 31).

As shown in Fig. 31, the perforated cylinder is in a state of plane
stress, as the normal stress through the thickness is null. An imposed
vertical displacement of 𝛿𝑧 = 0.20 [m] is applied at the top boundary.

The yield stress threshold, 𝜎𝑦, is temperature-dependent as shown
in Fig. 32(b), following the observations in Ref. [82].

Fig. 31 presents the cylinder geometry and the structured mesh
of hexahedral finite elements of size ℎ = 0.02 [m] employed in the
simulation, resulting in a total of 3749 elements.
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Fig. 27. Prandtl’s Punch test — case 1: (a) Comparative evolution of the temperature and (b) J2-stresses at point 𝐴.
Fig. 28. Prandtl’s Punch test — case 1: Collapse mechanisms (a)–(b) at 𝑑𝑦 = 0.02 [m] and (c)–(d) at 𝑑𝑦 = 0.20 [m].
Fig. 29. Prandtl’s Punch test — case 2: Collapse mechanisms (a)–(b) at 𝑑𝑦 = 0.02 [m] and (c)–(d) at 𝑑𝑦 = 0.20 [m].
Fig. 33 shows the load vs displacement curves of the singly per-
forated thin-walled cylinder computed for both formulations. It can
be observed that the peak loads computed with both formulations are
in good agreement in this case. However, an important difference on
the mechanical dissipation can be appreciated in the analysis. This is
16
caused by the poor evaluation of the stress field in the 𝐮∕𝑝 formulation,

which, as shown in Ref. [35] specially pollutes the computations in

the nonlinear range. Conversely, the enhanced precision of the 3-field

formulation allows to increase the accuracy of the discrete solution in
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Fig. 30. Prandtl’s Punch test — case 2: (a) Superimposed collapse mechanisms at 𝑑𝑦 = 0.20 [m]. In red the 𝐮∕𝐞∕𝑝 solution and the 𝐮∕𝑝 in blue; (b) Reaction vs displacement curves.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 31. Singly perforated thin-walled cylinder: Problem setting. Heated area in red.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 5
Singly perforated thin-walled cylinder: Material properties.

Property Value

Young’s Modulus [GPa] 200
Fracture Energy [MJ/m2] 20
Density [kg/m3] 7800
Thermal Conductivity [W/(m ◦C)] 45
Specific Heat Capacity [J/(kg ◦C)] 500

terms of stress and produces more reliable results, which is particularly
crucial in nonlinear problems [35].

Fig. 34 shows the J2-strains at the mid-simulation, Fig. 34(a)–
(b), and at the end of the simulation, Fig. 34(c)–(d). The difference
in the evaluation of the stress field by both formulations produces
the contrast observed in Fig. 34. The banding phenomenon, reported
in Section 5.2 and in the work [27], is again observed in Fig. 34
for the 𝐮∕𝑝 formulation when softening behavior is introduced, this
time in a thermo-mechanical analysis, while the 3-field solution is
correctly localizing in a continuous shear band. Fig. 35 exhibits the
principal stress vectors for the same time-steps. There it can be seen the
stress-locking phenomenon taking place in the 𝐮∕𝑝 formulation, where
stresses spuriously concentrate in the region of the shear band.

Fig. 36 shows the computed temperature field with both formula-
tions at the time step 𝑡 = 750 [s]. It can be seen that the temperature
is higher in the area where the crack develops in the 𝐮∕𝑝 solution
17
as a result of the higher dissipation of this FE formulation. This evi-
dences the over-dissipation due to stress locking, noticed in Figs. 33
and 35, that takes place in the 𝐮∕𝑝 formulation due to lack of stress
accuracy.

6. Conclusions

In this work, the numerical simulation of thermally-induced struc-
tural failure under incompressible conditions is addressed. For this, an
enhanced accuracy 𝐮∕𝐞∕𝑝 formulation is employed and its performance
is assessed against the classical 𝐮∕𝑝 formulation. J2-damage and J2-
plasticity nonlinear constitutive laws are introduced to represent the
degradation of the isochoric material. Thermal coupling is introduced
in the model following a staggered procedure.

The computation of several nonlinear benchmark applications is
performed, including strain localization, plasticity and softening be-
havior. Temperature-dependent material properties are introduced and
the influence of the temperature in structural failure is examined with
respect to reference isothermal analyses.

It is observed that:

• The standard displacement-based FE formulation from solid me-
chanics cannot be used to compute problems including
incompressible nonlinear constitutive behavior such as the Von
Mises yield criterion.

• The 3-field and 𝐮∕𝑝 FE formulations are both able of considering
the elastic incompressibility and the isochoric deformations of the
J2-plasticity and J2-damage constitutive models.

• The proposed 3-field FE has a much better performance com-
pared with the 𝐮∕𝑝 FE in terms of failure mechanisms, bearing
capacity, mechanical dissipations, solution stability and is free of
stress locking. These aspects are a consequence of the enhanced
accuracy of the stress/strain fields considered. Correspondingly,
the results computed with the 𝐮∕𝑝 formulation present serious
numerical difficulties in nonlinear applications.

• No spurious mesh dependency can be appreciated in the solutions
computed with the 𝐮∕𝐞∕𝑝 element.

• The proposed method is able to solve incompressible problems
using different FE meshes including triangles, quadrilaterals, hex-
ahedra, etc.

• The model reproduces the theoretical load carrying capacity of
the numerical benchmarks with accuracy.

• The coupling of the mixed 3-field FE for mechanical problems
with the thermal problem is successful and many of the strong
points of the 3-field formulation are inherited in
thermo-mechanical applications.
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Fig. 32. Singly perforated thin-walled cylinder: (a) Temperature increase curve applied on the perforation and (b) the uniaxial yield stress threshold evolution with the temperature.
Fig. 33. Singly perforated thin-walled cylinder: Load vs displacement curve.
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Appendix

The discrete virtual displacements, virtual deviatoric-strains and
virtual pressure are approximated as:

𝛿𝐮 =̃ 𝛿�̂� = 𝛿𝐮ℎ + 𝛿�̃�
𝛿𝐞 =̃ 𝛿�̂� = 𝛿𝐞ℎ + 𝛿�̃� (A.1)
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𝛿𝑝 =̃ 𝛿�̂� = 𝛿𝑝ℎ + 𝛿�̃�
Introducing these approximations and the ones in Eq. (42) into the
continuous weak form in Eq. (30) and separating the FE and sub-grid
scale terms results in the following system of equations:

∫𝛺[𝐒𝛿𝐮ℎ]
𝑇 (𝐂𝑑𝑒𝑣𝐞ℎ)𝑑𝛺 + ∫𝛺[𝐒𝛿𝐮ℎ]

𝑇 (𝐂𝑑𝑒𝑣�̃�)𝑑𝛺
+ ∫𝛺[𝐒𝛿𝐮ℎ]

𝑇 (𝑝ℎ𝐈)𝑑𝛺+

+ ∫𝛺[𝐒𝛿𝐮ℎ]
𝑇 (�̃�𝐈)𝑑𝛺 = 𝑊 (𝛿𝐮ℎ)

∀𝛿𝐮ℎ (𝑎)

∫𝛺 𝛿𝐞
𝑇
ℎ [𝐂

𝑑𝑒𝑣𝐒𝐮ℎ]𝑑𝛺 + ∫𝛺 𝛿𝐞
𝑇
ℎ [𝐂

𝑑𝑒𝑣𝐒�̃�]𝑑𝛺+

− ∫𝛺 𝛿𝐞
𝑇
ℎ𝐂

𝑑𝑒𝑣𝐞ℎ𝑑𝛺 − ∫𝛺 𝛿𝐞
𝑇
ℎ𝐂

𝑑𝑒𝑣�̃�𝑑𝛺 = 𝟎
∀𝛿𝐞ℎ (𝑏)

∫𝛺 𝛿𝑝
𝑇
ℎ (𝐆

𝑇 𝐮ℎ)𝑑𝛺 + ∫𝛺 𝛿𝑝
𝑇
ℎ (𝐆

𝑇 �̃�)𝑑𝛺 − ∫𝛺 𝛿𝑝
𝑇
ℎ

𝑝ℎ
𝐶𝑣𝑜𝑙 𝑑𝛺

− ∫𝛺 𝛿𝑝
𝑇
ℎ

�̃�
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0 ∀𝛿𝑝ℎ (𝑐)

∫𝛺[𝐒𝛿�̃�]
𝑇 (𝐂𝑑𝑒𝑣𝐞ℎ)𝑑𝛺 + ∫𝛺[𝐒𝛿�̃�]

𝑇 (𝐂𝑑𝑒𝑣�̃�)𝑑𝛺
+ ∫𝛺[𝐒𝛿�̃�]

𝑇 (𝑝ℎ𝐈)𝑑𝛺+

+ ∫𝛺[𝐒𝛿�̃�]
𝑇 (�̃�𝐈)𝑑𝛺 = 𝑊 (𝛿�̃�)

∀𝛿�̃� (𝑑)

∫𝛺 𝛿�̃�
𝑇 [𝐂𝑑𝑒𝑣𝐒𝐮ℎ]𝑑𝛺 + ∫𝛺 𝛿�̃�

𝑇 [𝐂𝑑𝑒𝑣𝐒�̃�]𝑑𝛺+

− ∫𝛺 𝛿�̃�
𝑇𝐂𝑑𝑒𝑣𝐞ℎ𝑑𝛺 − ∫ 𝑇𝛺 𝛿�̃�𝑇𝐂𝑑𝑒𝑣�̃�𝑑𝛺 = 𝟎

∀𝛿�̃� (𝑒)

∫𝛺 𝛿�̃�
𝑇 (𝐆𝑇 𝐮ℎ)𝑑𝛺 + ∫𝛺 𝛿�̃�

𝑇 (𝐆𝑇 �̃�)𝑑𝛺 − ∫𝛺 𝛿�̃�
𝑇 𝑝ℎ
𝐶𝑣𝑜𝑙 𝑑𝛺

− ∫𝛺 𝛿�̃�
𝑇 �̃�
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0 ∀𝛿�̃� (𝑓 )

(A.2)

The system formed by the sub-grid scale Eqs. (A.2)d, (A.2)e and
(A.2)f admits the following solution, corresponding to the residual
based sub-grid approach,

�̃� = 𝜏𝑢[𝐒𝑇 (𝐂𝑑𝑒𝑣𝐞ℎ) +𝐆𝑝ℎ + 𝐟 ]
�̃� = 𝜏𝑒[𝐖𝐮ℎ − 𝐞ℎ]

�̃� = 𝜏𝑝[𝐆𝑇 𝐮ℎ −
𝑝ℎ
𝐶𝑣𝑜𝑙 ]

(A.3)

where the stabilization parameters 𝜏𝑢, 𝜏𝑒 and 𝜏𝑝 are chosen to obtain
optimum convergence rates upon mesh refinement [71,84] as:

𝜏𝑢 =
𝑐𝑢ℎ𝐿0
2�̃�𝑑𝑒𝑣

𝜏𝑒 = 𝑐𝑒
ℎ
𝐿0

𝜏𝑝 = 𝑐𝑝�̃�𝑣𝑜𝑙
ℎ
𝐿0

(A.4)

where 𝐿0 is a characteristic length of the problem, 𝑐𝑢, 𝑐𝑒 and 𝑐𝑝 are
arbitrary stabilization constants, ℎ is the FE size and �̃�𝑑𝑒𝑣 is the secant
shear modulus defined as

�̃�𝑑𝑒𝑣 =
‖

‖

𝐬ℎ‖‖
2 ‖
‖

𝐞ℎ‖‖
(A.5)

and �̃�𝑣𝑜𝑙 is the compressibility modulus obtained according to a Fourier
analysis in [84] and defined as:

�̃�𝑣𝑜𝑙 =
(

𝑐1
2�̃�

+
𝑐2
�̃�

)−1
(A.6)

where �̃� and �̃� are the effective secant shear modulus and effective bulk
modulus, respectively. Choosing the constants 𝑐1 = 1 and 𝑐2 = 2

3 , and
rewriting �̃�𝑣𝑜𝑙 in terms of �̃� leads to

�̃�𝑣𝑜𝑙 = 2 �̃�
( 1 + 𝜈 ) (A.7)
3 1 − 𝜈
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Fig. 34. Singly perforated thin-walled cylinder: J2-strains (a)–(b) at the mid-simulation and (c)–(d) at the final time step.
Fig. 35. Singly perforated thin-walled cylinder: Principal stresses vectors (a)–(b) at the mid-simulation and (c)–(d) at the final time step.
Fig. 36. Singly perforated thin-walled cylinder: Temperature field in [◦C] computed
with both formulations at the time step 𝑡 = 750 [s].

Then �̃�, �̃� and �̃� of Eq. (A.3) are introduced into the remaining equa-

tions (A.2)a, (A.2)b and (A.2)c to stabilize the discrete FE problem. Note

that the stabilization terms in Eq. (A.3) tend to zero upon convergence

as they correspond to the residual of the strong form of the problem.
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With some manipulation, the stabilized weak form of the problem

results in:

(1 − 𝜏𝑒) ∫𝛺[𝐒𝛿𝐮ℎ]
𝑇 (𝐂𝑑𝑒𝑣𝐞ℎ)𝑑𝛺 + 𝜏𝑒 ∫𝛺[𝐒𝛿𝐮ℎ]

𝑇 (𝐂𝑑𝑒𝑣𝐒𝐮ℎ)𝑑𝛺

+ (1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺[𝐒𝛿𝐮ℎ]

𝑇 (𝑝ℎ𝐈)𝑑𝛺

+ 𝜏𝑝 ∫𝛺[𝐒𝛿𝐮ℎ]
𝑇 (𝐆𝑇 𝐮ℎ𝐈)𝑑𝛺 = 𝑊 (𝛿𝐮ℎ)

∀𝛿𝐮ℎ

(1 − 𝜏𝑒) ∫𝛺 𝛿𝐞
𝑇
ℎ [𝐂

𝑑𝑒𝑣𝐒𝐮ℎ]𝑑𝛺
− 𝜏𝑢 ∫𝛺(𝛿𝐞

𝑇
ℎ𝐒𝐂

𝑑𝑒𝑣)(𝐂𝑑𝑒𝑣𝐒𝑇 𝐞ℎ)𝑑𝛺+

− 𝜏𝑢 ∫𝛺(𝛿𝐞
𝑇
ℎ𝐒)[𝐂

𝑑𝑒𝑣𝐆𝑝ℎ]𝑑𝛺
− (1 − 𝜏𝑒) ∫𝛺 𝛿𝐞

𝑇
ℎ𝐂

𝑑𝑒𝑣𝐞ℎ𝑑𝛺 = 𝟎

∀𝛿𝐞ℎ

(1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝑝

𝑇
ℎ (𝐆

𝑇 𝐮ℎ)𝑑𝛺 − 𝜏𝑢 ∫𝛺(𝛿𝑝
𝑇
ℎ𝐆

𝑇 )(𝐂𝑑𝑒𝑣𝐒𝑇 𝐞ℎ)𝑑𝛺

− 𝜏𝑢 ∫𝛺(𝛿𝑝
𝑇
ℎ𝐆

𝑇 )(𝐆𝑝ℎ)𝑑𝛺+

− (1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝑝

𝑇
ℎ

𝑝ℎ
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0

∀𝛿𝑝ℎ

(A.8)

where the divergence theorem has been applied to the second and third

terms of Eq. (A.8)b and (A.8)c. Note that in this process, the boundary

terms of the sub-grid scales are neglected with respect to the other

terms. In addition, the body forces, 𝐟 , are considered constant inside

each element.
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Next, the FE discrete form of the problem is obtained by substituting
𝐮ℎ, 𝐞ℎ and 𝑝ℎ (and 𝛿𝐮ℎ, 𝛿𝐞ℎ, 𝛿𝑝ℎ) by their FE discrete approximations:

(1 − 𝜏𝑒) ∫𝛺(𝛿𝐔
𝑇 𝐍𝑇𝑢 𝐒

𝑇

⏟⏟⏟
=𝐁𝑇𝑢

)(𝐂𝑑𝑒𝑣𝐍𝑒𝐄)𝑑𝛺

+ 𝜏𝑒 ∫𝛺(𝛿𝐔
𝑇 𝐍𝑇𝑢 𝐒

𝑇

⏟⏟⏟
=𝐁𝑇𝑢

)(𝐂𝑑𝑒𝑣 𝐒𝐍𝑢
⏟⏟⏟

=𝐁𝑢

𝐔)𝑑𝛺+

+ (1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝐔

𝑇𝐍𝑇𝑢 𝐆𝐍𝑝𝐏𝑑𝛺

+ 𝜏𝑝 ∫𝛺 𝛿𝐔
𝑇𝐍𝑇𝑢 𝐒𝑇 𝐈

⏟⏟⏟
=𝐆

𝐆𝑇𝐍𝑢𝐔𝑑𝛺 = �̂� (𝛿𝐔)

∀𝛿𝐔

(1 − 𝜏𝑒) ∫𝛺 𝛿𝐄
𝑇𝐍𝑇𝑒 [𝐂

𝑑𝑒𝑣( 𝐒𝐍𝑢
⏟⏟⏟

=𝐁𝑢

𝐔)]𝑑𝛺

− 𝜏𝑢 ∫𝛺(𝛿𝐄
𝑇𝐍𝑇𝑒 𝐒𝐂

𝑑𝑒𝑣)(𝐂𝑑𝑒𝑣𝐒𝑇𝐍𝑒𝐄)𝑑𝛺
− 𝜏𝑢 ∫𝛺(𝛿𝐄

𝑇𝐍𝑇𝑒 𝐒)[𝐂
𝑑𝑒𝑣(𝐆𝐍𝑝𝐏)]𝑑𝛺

− (1 − 𝜏𝑒) ∫𝛺 𝛿𝐄
𝑇𝐍𝑇𝑒 𝐂

𝑑𝑒𝑣𝐍𝑒𝐄𝑑𝛺 = 𝟎

∀𝛿𝐄

(1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝐏

𝑇𝐍𝑇𝑝 (𝐆
𝑇𝐍𝑢𝐔)𝑑𝛺

− 𝜏𝑢 ∫𝛺(𝛿𝐏
𝑇𝐍𝑇𝑝𝐆

𝑇 )(𝐂𝑑𝑒𝑣𝐒𝑇𝐍𝑒𝐄)𝑑𝛺+

− 𝜏𝑢 ∫𝛺(𝛿𝐏
𝑇𝐍𝑇𝑝𝐆

𝑇 )(𝐆𝐍𝑝𝐏)𝑑𝛺

− (1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝐏

𝑇𝐍𝑇𝑝
𝐍𝑝𝐏
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0

∀𝛿𝐏

(A.9)

with

�̂� (𝛿𝐔) = ∫𝛺
𝛿𝐔𝑇𝐍𝑇𝑢 𝐟𝑑𝛺 + ∫𝛤𝑡

𝛿𝐔𝑇𝐍𝑇𝑢 �̄�𝑑𝛤 (A.10)

Once again, the virtual displacement 𝛿𝐔, virtual deviatoric-strain
𝛿𝐄 and virtual pressure 𝛿𝐏 nodal vectors that appear in the system of
qs. (A.9) are arbitrary, leading to the stabilized system of Eqs. (43).
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