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a b s t r a c t

This work describes the formulation adopted for the numerical simulation of the friction stir welding
(FSW) process. FSW is a solid-state joining process (the metal is not melted during the process) devised
for applications where the original metallurgical characteristics must be retained. This process is primar-
ily used on aluminum alloys, and most often on large pieces which cannot be easily heat treated to
recover temper characteristics.

Heat is either induced by the friction between the tool shoulder and the work pieces or generated by
the mechanical mixing (stirring and forging) process without reaching the melting point (solid-state pro-
cess).

To simulate this kind of welding process, a fully coupled thermo-mechanical solution is adopted. A slid-
ing mesh, rotating together with the pin (ALE formulation), is used to avoid the extremely large distor-
tions of the mesh around the tool in the so called stirring zone while the rest of the mesh of the sheet
is fixed (Eulerian formulation).

The orthogonal subgrid scale (OSS) technique is used to stabilize the mixed velocity–pressure formu-
lation adopted to solve the Stokes problem. This stabilized formulation can deal with the incompressible
behavior of the material allowing for equal linear interpolation for both the velocity and the pressure
fields.

The material behavior is characterized either by Norton–Hoff or Sheppard–Wright rigid thermo-visco-
plastic constitutive models.

Both the frictional heating due to the contact interaction between the surface of the tool and the sheet,
and the heat induced by the visco-plastic dissipation of the stirring material have been taken into
account. Heat convection and heat radiation models are used to dissipate the heat through the bound-
aries.

Both the streamline-upwind/Petrov–Galerkin (SUPG) formulation and the OSS stabilization technique
have been implemented to stabilize the convective term in the balance of energy equation.

The numerical simulations presented are intended to show the accuracy of the proposed methodology
and its capability to study real FSW processes where a non-circular pin is often used.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Friction stir welding (FSW) is a solid-state joining process
meaning that the metal is not melted during the welding process.
In FSW, a shouldered pin is rotated at constant speed and plunged
into the joint line between the two metal sheets butted together
(see Fig. 1(a) in [51]). Once the tool has been completely inserted,
it is moved at constant advancing velocity along the welding line
while rotating. During the process operations, a clamping system
must keep the work-pieces rigidly fixed onto a backing bar to pre-
vent the abutting joint faces from being forced apart. Due to the
rotation and the advancing motion of the pin, the material close

to the tool, in the so called stir-zone, is softened by the heat gener-
ated by the plastic dissipation (stirring effect) and the heat induced
by the contact friction between the probe shoulders and the sheet.
As a consequence, the material is stretched and forged around the
rotating probe flowing from the advancing side to the retreating
side of the weld, where it can rapidly cool down and consolidate,
to create a high quality solid-state weld.

The FSW process was patented at The Welding Institute (UK) in
December 1991 [65] and it has proven to be a very successful
joining technology for aluminum alloys, nickel alloys and, more
recently, for steels [66,29]. The solid-state nature of FSW has sev-
eral advantages over fusion welding methods since any problems
associated with cooling from the liquid phase are avoided. Porosity
defects, solidification cracking and liquation cracking do not occur
during FSW. Nevertheless, as in the traditional fusion welds, a soft-
ened heat affected zone and a tensile residual stress parallel to the
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weld do appear. Furthermore, FSW process can suffer for a differ-
ent class of defects; for instance, due to insufficient welding tem-
perature (low rotational speeds or high advancing speeds) or
caused when the weld material, in the stir-zone, is unable to
accommodate the extensive deformation during the stirring action.
The material flow is very sensitive to the different welding
operation parameters (rotation speed, advancing speed, shoulder
pressure, pin shape, sheet thickness, among others), which must
be carefully calibrated according to the welding operation and
the selected material. The strong coupling between the tempera-
ture field and the mechanical behavior is the key-point in FSW
and its highly non-linear relationship makes the process setup
complex. The operative range for most of the welding process
parameters is rather narrow, requiring a tedious characterization
and sensitivity analysis. This is why, despite the apparent simplic-
ity of this novel welding procedure, computational modeling is
considered a very helpful tool to understand the leading mecha-
nisms that govern the material behavior.

To date, most of the research interest devoted to the topic was
focused on the heat transfer and thermal analysis in FSW. In [42]
the authors proposed a simple heat transfer model to predict the
temperature distribution in the work-piece. A moving heat source
model for a finite element analysis was developed in [18,19], and
the transient evolution of the temperature field, the induced resid-
ual stresses and distortions induced by the FSW process were sim-
ulated. Three-dimensional heat flow models for the prediction of
the temperature field were developed in [25,40]. The effect of the
shoulder of the pin on the heat generation during the FSW opera-
tion was investigated in [50,59]. Coupled thermo-mechanical mod-
eling of the FSW process was analyzed in [68,49,31,30]. An
interesting comparison between the heat energy generated by
the FSW using numerical methods and experimental data was pre-
sented in [37,20]. From the experimental point of view, different
measurements of temperature field of the work-piece can be found
in [64], while measured residual stresses in FSW for 2024-T3 and
6013-T6 aluminum are presented in [38]. Experimental evidence
of the material flow around the tool by using copper sheets placed
transversally and longitudinally to the weld line is shown in
[32,43]. In these works the flow pattern is characterized by using
metallography, 2D X-rays analysis and X-rays tomography, show-
ing that copper sheets embedded into the aluminum work-pieces
could be successfully used as marker material. Finally, a demon-
stration of the tremendous potential and successful applications
of the FSW process for aluminum airframe structures was pre-
sented in [63].

The effort devoted to understand the leading mechanisms with-
in the FSW process making use of the numerical simulation often
presents some limitations in terms of complexity of the pin geom-
etry, non-linearity of the material behavior or ad hoc boundary
conditions. In this work, a fully coupled thermo-mechanical frame-
work for the numerical simulation of the FSW process is presented.
The strategy adopted to deal with a generic pin shape (not neces-
sarily cylindrical) together with an accurate definition of the
boundary conditions is presented in Section 2. The local (strong)
form of the momentum, mass and energy balance equations,
which govern the thermo-mechanical problem, is presented in
Section 3. In this Section, two alternative rigid-visco-plastic mod-
els are introduced to deal with the extremely large deformation
rates occurring in a FSW process. Both models have been coupled
with the temperature field to consider the thermal softening
behavior of the material during the stirring process. Section 4 pre-
sents the staggered solution adopted to solve the coupled prob-
lem within the framework of the classical fractional step
method. The resulting time integration scheme is based on the
isothermal operator split of the governing equations. The weak
(integral) form of the thermo-mechanical governing equations is

presented in Section 5. On one hand, the mechanical problem is
solved by the balance of momentum equation together with the
mass continuity equation to force the incompressibility con-
straint. This mechanical constraint is necessary when the defor-
mation experimented by the material is mainly (or exclusively)
deviatoric, that is, preserving the original volume. To this end,
an ad hoc stabilization technique based on the orthogonal sub-
grid scale (OSS) methods is introduced to overcome the Inf-Sup
condition (on the choice of the interpolation spaces) allowing
the use of linear–linear interpolations for both velocities and
pressure fields. On the other hand, the weak form of the thermal
problem is also manipulated to introduce the necessary stabiliza-
tion for the convective term. Also in this case, the stabilization ap-
proach is based on the OSS technique. In Section 6, the frictional
contact between the pin and the stir zone as well as the interac-
tion between the work-piece and the stir-zone is detailed. Both
the classical Coulomb’s law and the Norton’s friction law are pre-
sented together with the corresponding heat flux generated by
the friction dissipation. Finally, two numerical benchmarks are
presented in Section 7 to assess the present formulation and to
show its performance.

2. Numerical strategy to simulate the FSW process

In this section, the strategy adopted for the numerical simula-
tion of the FSW process is presented. Firstly, it is important to dis-
tinguish between two different kinds of analyses carried out at
local or global level, respectively.

On one hand, we refer to local level analysis when the focus of
the simulation is the stirring zone. This class of simulation is in-
tended to compute the heat power generated either by the visco-
plastic dissipation induced by the stirring process or by the friction
at the contact interface between the probe shoulder and the metal
sheet. At this level, different phenomena directly related to the
FSW technology can be studied: the relationship between rotation
and advancing speed, the contact mechanisms in terms of applied
normal pressure and friction coefficient, the pin shape, the material
flow within the heat affected zone (HAZ), the size of the HAZ and
the corresponding consequences on the microstructure evolution,
etc.

On the other hand, a simulation carried out at global level stud-
ies the entire structure to be welded. A moving heat power source
is applied to a control volume representing the actual size of the
heat affected zone at each time-step of the analysis. The effects in-
duced by the FSW process on the structural behavior are the target
of this kind of study. These effects can show in terms of distortions,
residual stresses or weaknesses along the welding line, among
others.

In this work, a novel numerical strategy to model the FSW pro-
cess at local level is presented. Fig. 1b) shows three different zones
used to distinguish among pin (green), stir-zone (blue1) and the
rest of the work-piece (gray). Taking into account that, during the
welding process, the pin is rotating at a very high speed (e.g. 50–
1500 rpm, depending on the work-piece material), a fully Lagrangian
approach (which follows the material particles of the continuum in
their motion) is unaffordable. The material in the stirring zone suf-
fers very large deformations at high strain-rates. Consequently, a
continuous re-meshing is required to avoid excessive mesh distor-
tions. This would lead to high computational costs, as well as to a
general loss of solution accuracy due to the interpolation process
necessary to move both nodal and Gaussian variables from mesh
to mesh.

1 For interpretation of color in Figs. 1–4, the reader is referred to the web version of
this article.
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The alternative is the Eulerian approach (which looks at spatial
positions instead of material points). Velocities are used as nodal
variables (rather than displacements) and the constitutive laws
are typically formulated in terms of strain-rate rather than strain.
Hence, instead of a thermo-elasto-visco-plastic model (generally
adopted for metals in the Lagrangian formulation), a thermo-ri-
gid-visco-plastic behavior is usually introduced within an Eulerian
framework.

A further complexity to be taken into account when modeling a
FSW process is the shape of the pin. Within an Eulerian frame-
work, when the pin is not cylindrical, the boundaries of the model
are continuously changing according to the current position/rota-
tion of the pin. As a consequence, the integration domain must be
re-defined at each time-step of the simulation. In this work, an
Arbitrary-Lagrangian–Eulerian formulation (ALE) is used (see sur-
vey in [36]). The reference system is rigidly rotated following
the pin movement (convective frame) independently of the mate-
rial points. Using this procedure, re-meshing is avoided in the
stir-zone, and a convective term must be added to the balance
equations.

The first papers introducing the Arbitrary–Lagrangian–Eulerian
formulation date back to 1964 with the original name of cou-
pled Eulerian–Lagrangian [52] and mixed Eulerian–Lagrangian
[39], respectively. They implemented their formulations in a
finite difference code. More recently, the ALE formulation has
been introduced in the FE community for fluid–structure
interaction analysis by Donéa [33–35], Belytschko [10–12]
and Hughes [47] among others. The method has been further
extended to solid mechanics [55,45,56,58,13]. Finally, within
the context of FSW process the ALE formulation has been
used by De Vuyst et al. [30,31], Santiago et al. [60,61] among
others.

The description of motion and the corresponding simulation
strategy adopted for the work-piece (the stir-zone excluded), the
stir-zone and the pin is quite different.

To this end, let us distinguish between:

� x: the coordinates of a point in space (referred to as a spatial
point), defined by the Cartesian reference system, Rx. This refer-
ence system does not move (inertial system) and it is referred to
as the Eulerian system. If a body is moving in Rx, then its abso-
lute velocity is v ¼ dx

dt;

� X: the location of a particle (referred to as a material point) of the
body. This is the Lagrangian viewpoint used to identify the
material domain, RX, and to follow its motion. The reference
system RX moves and deforms together with the body;
� v: the convected points within the convective frame Rv. In the

most general case, this reference system moves with a velocity,
vmesh, independently of the body motion: this is also referred to
as the Arbitrary-Lagrangian–Eulerian (ALE) framework. In Rv the
velocity, vv ¼ dv

dt , is relative to the convective frame Rv. Observe
that, once introduced the FE discretization, the mesh is defined
in Rv and the mesh nodes are neither material points nor spatial
points.

This given, let us introduce the definition of motion and defor-
mation within the three different FSW zones.

2.1. Work-piece

The movement of the pin is split into advancing speed (assigned
to the work-piece in the opposite direction) and rotation (assigned
to the pin). Therefore, the work-piece can be solved within an Eule-
rian framework where the velocity field, vðx; tÞ, is the unknown at
any spatial position, x. The boundary conditions of the problem are
given in term of a (prescribed) advancing velocity at the inflow,
v ¼ �v.

The integration domain, Rv (the FE mesh), is defined in the Eule-
rian reference system, Rx, so that the nodes of the grid are spatial
points: v ¼ x, and the velocity of this mesh, vmesh ¼ 0. A particle,
X, of the work-piece moves with respect to the mesh and to know
its current position, xðX; tÞ, at time t, it is necessary to integrate the
velocity field as:

xðX; tÞ ¼ Xþ
Z t

0
vðX; tÞdt; ð1Þ

where X ¼ xðt ¼ 0Þ is the reference position of the particle at time
t ¼ 0. This integration is necessary to compare the numerical results
with the position of the markers introduced in the experimental
setting to follow the material stirring during the FSW process.

The balance equations that govern the thermo-mechanical
problem require the evaluation of the material time derivatives
of both momentum and energy (spatial) fields, qv and qe respec-
tively, as well as the (spatial) density, q.

Fig. 1. FSW technology and computational domains.
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For the sake of simplicity, let us denote as / v; tð Þ a generic state
variable of the problem, defined at a node of the mesh v at time t.
The material time derivative of / is computed as:

D/
Dt

����
v¼X
¼ @/
@t

����
v¼x
þ @/
@v
� @v
@t

ð2Þ

¼ @/
@t

����
v¼x
þ @/
@x
� @x
@t

ð3Þ

¼ @/
@t

����
v¼x
þ vðx; tÞ � rx /ð Þ ð4Þ

where vðx; tÞ :¼ @xðX;tÞ
@t is the (spatial) velocity, while @ð�Þ

@t

���
v¼x

and

rxð�Þ ¼ @ð�Þ
@x are the spatial time derivative and the spatial gradient,

respectively. The second term in (4) is the so called convective term.
It accounts for the movement of the particle with respect to a fixed
grid defined in the reference system, Rx. The gradient,rvð�Þ ¼ rxð�Þ,
needs to be computed only once according to the mesh coordinates
defined for the work-piece.

2.2. Pin

A different strategy is adopted for the numerical simulation of
the pin. In this case, it is helpful to follow the body movement with
the integration domain: at each time-step of the analysis the mesh
moves according to the rotation of the pin. Hence, the pin move-
ment is described in a Lagrangian framework. The integration do-
main, Rv (the finite element mesh), is kept solidary with the tool
and it deforms with it. The material particles X, in RX, are perma-
nently connected to the nodes of the grid: v ¼ X.

The body motion, referred to the inertial system, is defined by
the current position, xðX; tÞ of a particle X , at time, t, as:

xðX; tÞ ¼ Xþ u X; tð Þ; ð5Þ

where uðX; tÞ is the (material) displacement field, which is the var-
iable for the mechanical problem.

The material time derivative of a (material) variable, / X; tð Þ, is:

D/
Dt

����
v¼X
¼ @/
@t

����
v¼X

: ð6Þ

Since in the Lagrangian framework the material points coincide
with the grid points all along the whole motion, there are no con-
vective effects and the material derivative reduces to a simple time
derivative.

The spatial gradient is computed as:

rxð�Þ ¼
@ð�Þ
@x
¼ @ð�Þ

@X
� @X
@x
¼ F�T � rXð�Þ; ð7Þ

where F ¼ @xðX;tÞ
@X is the deformation gradient accounting for the

deformation of the grid, while rX �ð Þ is the material gradient com-
puted at the original position of the mesh, X ¼ x X; t ¼ 0ð Þ.

Finally, from Eq. (5), the material velocity is computed from the
displacement field as:

vðX; tÞ :¼ dx X; tð Þ
dt

¼ duðX; tÞ
dt

: ð8Þ

2.3. Stir-zone

The stir-zone is part of the work-piece. It is the so called pro-
cessing zone or heat affected zone (HAZ), where most of the plastic
deformations and heat generation occur. The size of this area
strongly depends on the viscosity and thermal diffusivity of the
material. In a FSW process, particularly after reaching the steady-
state conditions, the process zone is restricted to a very close area
around the pin. From the numerical simulation point of view, the

radius of influence can be taken as 2–3 times the size of the (shoul-
dered) pin.

A more complex description is necessary to study the stir-zone.
To avoid continuous remeshing, the grid used to analyze this pro-
cess zone is (rigidly) rotated following the pin movement. This
means that neither the mesh is fixed (as in the Eulerian formula-
tion used for the work-piece), nor it is deforming with the contin-
uum body (as in the Lagrangian framework used for the pin). The
integration domain, Rv, moves to keep its boundary connected to
the contour surface of the pin. In this case, neither the nodes of
the mesh represent material particles nor the velocity of the mesh
is equal to the material velocity. This convective framework corre-
sponds to the so called Arbitrary-Lagrangian–Eulerian (ALE) setting.

The material derivative of a generic state variable, / v; tð Þ, is de-
fined as:

D/
Dt

����
v¼X
¼ @/
@t

����
v

þ @/
@v
� @v
@t
¼ @/
@t

����
v

þ vv � rv /ð Þ: ð9Þ

On one hand, the time derivative, @/
@t

��
v

, is computed at the
nodes, v, of the mesh. On the other hand, both the gradient,

rvð�Þ ¼ @ð�Þ
@v , and the velocity, vv ¼ @vðX;tÞ

@t , are referred to the (non-

inertial) reference system, Rv. In this ALE framework the convective
gradient is expressed by:

rvð�Þ ¼
@ �ð Þ
@v
¼ @ð�Þ

@x
@x
@v
¼ FT

v � rxð�Þ; ð10Þ

where rxð�Þ is the spatial gradient (referred to the Cartesian sys-
tem, Rx) and Fv ¼ @x

@v is the convective deformation gradient, which
measures the mesh distortion.

Defining the convective velocity as:

c v; tð Þ ¼ Fv � vv ¼ v v; tð Þ � vmesh ð11Þ

the material derivative within the ALE framework results in:

D/
Dt

����
v¼X
¼ @/
@t

����
v

þ c v; tð Þ � rx /ð Þ ð12Þ

Observe that c v; tð Þ can be interpreted as the relative velocity of
a particle with respect to the convective reference system, Rv,
which is moving with velocity, vmesh.

The spatial gradient in Eq. (12) is computed as
rxð�Þ ¼ F�T � rXð�Þ, whererXð�Þ is the material gradient at the ori-
ginal configuration and F ¼ @x X;tð Þ

@X is the deformation gradient re-
ferred to the current position of the nodes of the mesh. This
usually constitutes an added complexity in the ALE method be-
cause it is necessary to compute the movement of the mesh at each
time-step (independently of the body motion). In many applica-
tions (e.g. forging analysis, CFD with moving free-surface, etc.. . .)
an ad hoc methodology is required to compute the position of
the mesh at each time-step of the analysis.

However, when studying a FSW process, the mesh velocity can
be prescribed according to the pin rotation as:

vmesh v; tð Þ ¼ -� r v; tð Þ; ð13Þ

where - is the angular velocity of the pin and r v; tð Þ ¼ v tð Þ � Xo is
the position of any grid point respect to the rotation axis, Xo.

Therefore, it is possible to integrate Eq. (13) to compute the
deformation gradient as: Fv ¼ @x v;tð Þ

@v ¼ R where R -; tð Þ is a constant

rotation tensor (we are assuming that x v; tð Þ ¼ R � vðX; tÞ þ const:).

3. Governing equations

In this section, the governing equations which define the ther-
mo-mechanical problem are presented. The ALE framework is used
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as it is the most general one, including both the Lagrangian and the
Eulerian formulations as particular cases. Observe that this is very
convenient from the programming point of view, leading to a un-
ique format for all the balance equations. Table 1 summarizes
the computational framework together with the solution hypothe-
ses for the pin, the work-piece and the stir-zone.

3.1. Mechanical problem

The mechanical problem is defined by the momentum and mass
conservation equations. The strong form of these balance equa-
tions in the ALE framework is:

Dq
Dt

����
v¼X
¼ @q
@t

����
v

þ c � rx qð Þ ¼ �qrx � v; ð14Þ

q
Dv
Dt

����
v¼X
¼ q

@v
@t

����
v

þ c � rx vð Þ
" #

¼ rx � rþ qb; ð15Þ

where r v; tð Þ is the Cauchy stress tensor, b is the body force per unit
of mass and rx � ð�Þ is the spatial divergence operator.

Modeling FSW process both Eqs. (14) and (15) can be simplified
according to the following hypotheses:

� Strains are mainly deviatoric so that the volumetric deforma-
tions, including thermal effects, are neglected: material behav-
ior is incompressible, q ¼ qo;
� The Reynolds number is very low, meaning that the inertia term

can be neglected if compared to the viscous term;

The stress tensor can be split into volumetric and deviatoric
parts as:

r ¼ pIþ s; ð16Þ

where p ¼ 1
3 trace rð Þ is the pressure field and, s, is the deviatoric

stress tensor.
As a result the mechanical problem can be solved using the

mixed v=pð Þ quasi-static format of the balance of momentum equa-
tion together with the incompressibility (continuity) equation as:

r � sþrpþ qob ¼ 0; ð17Þ
r � v ¼ 0; ð18Þ

where, for the sake of simplicity, the spatial divergence operator
rx � ð�Þ is denoted (to the end of this work) simply by r � ð�Þ.

3.2. Thermal problem

The strong form of the balance of energy equation in the ALE
framework is:

qo
De
Dt

����
v¼X
¼ qo

@e
@t

����
v

þ c � re

 !
¼ r : _eþ qo _r �r � q; ð19Þ

where e v; tð Þ is the specific internal energy, _r is the rate of heat
source per unit of mass and q ¼ �krT is the heat flux, per unit of

surface, computed in terms of the temperature gradient, rT , and
the thermal conductivity, k. The stress power, r : _e, is expressed
in terms of the stress, r and the strain rate, _e. Assuming the additive
decomposition of the strain rate as:

_e ¼ _ee þ _evp; ð20Þ

where _ee and _evp are the elastic and visco-plastic parts, respectively,
it is possible to rewrite Eq. (19) as:

qo
@h
@t

����
v

þ c � rh

 !
¼ _Dmech þ qo _r �r � q; ð21Þ

where h v; tð Þ and Dmech are the specific enthalpy function and the
mechanical dissipation, defined in rate format as:

qo
_h ¼ qo _e� r : _ee; ð22Þ

_Dmech ¼ r : _evp P 0: ð23Þ

It is common to express the enthalpy rate in terms of the tem-
perature rate as:

qo
_h ¼ qoc _T; ð24Þ

where c is the specific heat capacity. This given, the balance of en-
ergy equation can be rewritten as:

qoc
@T
@t

����
v

þ c � rT

 !
¼ _Dmech þ qo _r �r � q ð25Þ

which is the heat transfer equation for a continuum body in the ALE
format.

3.3. Local form of the FSW problem

The FSW problem is stated by coupling the quasi-static
mechanical governing Eqs. (17) and (18) with the transient heat
transfer equation in (25):

r � sþrpþ qo b ¼ 0;
r � v ¼ 0;

qoc @T
@t

��
v
þ c � rT

� �
¼ _Dmech �r � q

8>><
>>: ð26Þ

where the volumetric heat source, qo _r, is generally neglected in
FSW analysis.

Eqs. (26) state the equilibrium for both the mechanical and the
thermal problems in local form, that is, at each point, v tð Þ, of the
integration domains defined in Rv. Therefore, it is interesting to ob-
serve that in the pin domain, all the state variables, v; p and T, as
well as any derived variable, such as s v; Tð Þ or q Tð Þ, are referred
to a material particle, X, while in the work-piece, they are referred
to a spatial point, x in the Cartesian domain Rx (see Table 2).

3.4. Mechanical constitutive laws

The FSW process is characterized by high strain rates as well as
by a wide temperature range from the environment temperature

Table 1
Convective velocity, material derivative and spatial gradient in Lagrangian (pin),
Eulerian (work-piece) and ALE (stir-zone) formulations.

Pin Work-piece Stir-zone

Lagrangian Eulerian ALE
v ¼ X v ¼ x v – X – x
vmesh ¼ v vmesh ¼ 0 vmesh ¼ -� r
c ¼ 0 c ¼ v c ¼ v � vmesh

Dð�Þ
Dt

���
v¼X
¼ @ð�Þ

@t

���
X

Dð�Þ
Dt

���
v¼X
¼ @ð�Þ

@t

���
x
þ v � rxð�Þ Dð�Þ

Dt

���
v¼X
¼ @ð�Þ

@t

���
v
þ c � rxð�Þ

rxð�Þ ¼ F�T � rXð�Þ rx �ð Þ ¼ rXð�Þ rxð�Þ ¼ F�T � rXð�Þ

Table 2
Velocity, temperature, heat flux and stress fields in Lagrangian (pin), Eulerian (work-
piece) and ALE (stir-zone) formulations.

Pin Work-piece Stir-zone

Lagrangian Eulerian ALE
v ¼ X v ¼ x v – X – x
vðX; tÞ v x; tð Þ v v; tð Þ
TðX; tÞ Tðx; tÞ T v; tð Þ
rðX; tÞ rðx; tÞ r v; tð Þ
qðX; tÞ q x; tð Þ q v; tð Þ
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to the melting point. Hence, the constitutive laws to be adopted
for the work-piece and, particularly, in the stir-zone should be
dependent on both variables. The pin needs not be included in
the following discussion because its corresponding constitutive
equations (in Lagrangian format) are usually defined by a simple
thermo-elastic or thermo-rigid law.

According to the split of the stress tensor introduced in (16), it is
common [60,61,67] to adopt a rigid visco-plastic behavior, using a
rate-dependent constitutive law expressed as:

s ¼ 2leff
_e; ð27Þ

where leff is the effective viscosity of the material and _e = dev _eð Þ is
the deviatoric part of the total strain rate, _e which is computed as:

_e ¼ rsv; ð28Þ

where rsv �ð Þ denotes the symmetric spatial gradient operator. In
FSW, the elastic part of the strain tensor, _ee, in (20) is negligible if
compared with the visco-plastic component, _evp, so that:

_e � _evp ð29Þ

and all the deformation is assumed to be visco-plastic. Furthermore,
it is also common to neglect the volumetric deformation, so that the
total strain rate is purely deviatoric:

_e � dev _eð Þ ¼ _e: ð30Þ

This incompressible behavior of the material requires a special
treatment from the computational point of view.

With regard to the definition of the effective viscosity, leff , dif-
ferent constitutive characterizations can be adopted. A first choice
is the classical Norton–Hoff model [53,46], which assumes that the
effective viscosity is a function of the temperature and the equiva-
lent plastic strain-rate, _eeq ¼

ffiffi
2
3

q
_ek k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_e : _eð Þ
q

, in the form:

leff
_eeq; T
� �

¼ l
ffiffiffi
3
p

_eeq

� �m�1
; ð31Þ

where l Tð Þ and 0 6 m Tð Þ 6 1 are the (temperature dependent) vis-
cosity and the (temperature dependent) rate-sensitivity parame-
ters, respectively. The linear case m ¼ 1 recovers the Newtonian
behavior:

s ¼ 2l _e ð32Þ

with a linear relationship between stresses and strain-rates. Rigid
perfect-plastic behavior corresponds to m ¼ 0:

s ¼
ffiffiffi
2
p

l n; ð33Þ

where n ¼ _e
_ek k ¼ s

ksk defines the plastic-flow direction.
In FSW, the rate-sensitivity parameter is usually in the range

0:1 6 m 6 0:3 with a very non-linear (non-Newtonian) behavior.
An alternative to the Norton–Hoff model is the Sheppard–

Wright model [62]. In this case, the effective viscosity, leff
_eeq; T
� �

is a function of the equivalent plastic strain-rate and the tempera-
ture field in the following form:

leff
_eeq; T
� �

¼ 1
3

reff

_eeq
; ð34Þ

where the effective stress reff _eeq; T
� �

is defined as [67]:

reff _eeq; T
� �

¼ 1
a

sinh�1 Z
A

� 	1
n

" #
¼ 1

a
ln

Z
A

� 	1
n

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z

A

� 	2
n

s2
4

3
5 ð35Þ

being a;A and n material constants. The Zener–Hollomon parame-

ter, Z ¼ _eeq exp Q
RTk

� �
takes into account the temperature depen-

dency (Tk ¼ T þ 273:16 is the absolute temperature), Q is the
activation energy and finally, R is the universal gas constant.

The final step required to the constitutive model is to compute
the plastic (stirring) dissipation, which is one of the key mecha-
nisms of heat generation during the welding process together with
the friction dissipation. The plastic dissipation rate, _Dmech, is com-
puted for both constitutive models as:

_Dmech ¼ r : _evp ¼ s : _e ¼ 2leff
_ek k2 ¼ reff _eeq: ð36Þ

� Remark-1: The advantage of the Sheppard–Wright model is the
possibility of a better calibration of the material behavior in the
entire temperature range from the environment temperature to
the melting point while in Norton–Hoff model the temperature
dependency must be introduced by means of a tabulated (tem-
perature dependent) viscosity.
� Remark-2: Neither the Sheppard–Wright nor the Norton–Hoff

models take into account the thermo-elastic strains. This means
that the proposed constitutive laws are not able to predict the
residual stresses after joining and cooling back to room temper-
ature. The study of the residual stresses is more appropriate at
global level simulation where the full part/structure is studied
using a Lagrangian formulation and a moving heat source com-
puted in a locally based FSW simulation (scope of the present
paper).
� Remark-3: The proposed formulation could incorporate a more

sophisticated strain-based mechanical model able to account
for the thermal softening as proposed in [44,57,9]. To this end,
the integration of the strain variables along the stream-lines
would be necessary.

4. Time integration

The numerical solution of the coupled thermo-mechanical
problem (26) involves the transformation of an infinite dimen-
sional transient system into a sequence of discrete non-linear alge-
braic problems. This can be achieved by means of a time-marching
scheme for the advancement of the primary nodal variables, veloc-
ities, pressure and temperatures, together with a return mapping
algorithm to update the internal variables.

With regard to the time stepping scheme different strategies
are possible, but they can be grouped in two categories: simulta-
neous (monolithic) solutions and staggered (block-iterative or
fractional-step) time-stepping algorithms. In this work, a stag-
gered solution is adopted. A product formula algorithm is intro-
duced, leading to a time-integration scheme in which the two
sub-problems (thermal and mechanical) are solved sequentially,
within the framework of the classical fractional step methods
(see [3,15]).

Let us consider the following (homogeneous) first order con-
strained dissipative local problem of evolution [24]:

_Z ¼ A Zð Þ in Xv � 0; t½ �;
Z toð Þ ¼ Zo in Xv;

ð37Þ

where Z ¼ q;v;h½ �T is the set of primary independent variables and
A Zð Þ is a non-linear operator defined as:

AðZÞ ¼

�qr � v;
1
q r � sþrpþ qbð Þ;
1
q

_Dmech �r � q
� �

:

8>><
>>: ð38Þ

For quasi-static incompressible problems, _Z ¼ 0;0; _h
h iT

, and the
general operator (38) can be replaced by:

A Zð Þ ¼

r � v;
1
qo
r � sþrpþ qobð Þ;

1
qo

_Dmech �r � q
� �

:

8>><
>>: ð39Þ
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The fractional step method is based on an additive isothermal
operator split of the differential operator A Zð Þ of the form [6,7,4]:

Að�Þ ¼ Að1ÞmechðZÞ þ Að2ÞtherðZÞ; ð40Þ

where the operators Að1ÞmechðZÞ and Að2ÞtherðZÞ are defined as:

Að1ÞmechðZÞ ¼
r � v;
1
qo
r � sþrpþ qobð Þ:

0;

8><
>: ð41Þ

Að2ÞtherðZÞ ¼
0;
0:
1
qo

_Dmech �r � q
� �

:

8><
>: ð42Þ

The solution Znþ1 at time tnþ1 is obtained in two steps: firstly,
the mechanical sub-problem defined by Að1ÞmechðZÞ is solved starting
from the solution Zn at time tn. The result is an intermediate solu-
tion Znþ1, used as starting point for the thermal sub-problem
Að2ÞtherðZÞ:

Sub� problem1

Zn ! _Z ¼ Að1ÞmechðZÞ ! Znþ1; ð43Þ
Sub� problem2

Znþ1 ! _Z ¼ Að2ÞtherðZÞ ! Znþ1: ð44Þ

Sub-problem 1 defines a mechanical phase at fixed enthalpy
(temperature) and Sub-problem 2 defines a thermal phase at fixed
configuration. As a result, the original coupled problem is split into
two smaller partitions, allowing the use of any integration tech-
nique originally developed for the uncoupled sub-problems.

The algorithm presented above is first order accurate, and it does
not require an iteration loop over the two problems within the
same time-step. It is worth to point out that the split (39) is formu-
lated for the continuum operator A and not for the discrete
operator, say Ah, arising from a spatial discretization of the
initial-boundary value problem. If the split is performed for the
discrete operator Ah, the classical Jacobi and Gauss–Seidel iterative
methods arise.

The critical restriction to guarantee stability when using the
operator split (39) is that each one of the sub-problems must pre-
serve the dissipative structure of the original problem, that is:Z

Xv

_DðaÞint ðZ
ðaÞÞdV ¼

Z
Xv

_DðaÞmechðZ
ðaÞÞ þ _DðaÞcondðZ

ðaÞÞ
h i

dV P 0; ð45Þ

a ¼ 1;2;

where ZðaÞ denotes the solution obtained by each operator
AðaÞðZðaÞÞ; a ¼ 1;2. Restriction (45) is directly related to the satisfac-
tion of the second principle of the thermodynamics, where the inter-
nal dissipation _Dint is split into mechanical dissipation and
dissipation by conduction, _Dmech and _Dcond, respectively. In this work,
due to the particular form of the constitutive equations adopted for
the FSW process, _Dmech and _Dcond are always non-negative in both
sub-problems:

_Dmech ¼ r : _evp ¼ 2leff
_ek k2 P 0 leff > 0; ð46Þ

_Dcond ¼ �
q � rT

T
¼ k rTk k2

T
P 0 k > 0: ð47Þ

The final result is an accurate, efficient and robust numerical
strategy for the numerical simulation of coupled thermo-mechan-
ical problems such as the FSW processes.

5. Weak form of the coupled problem

Let us denote by Xv an open and bounded domain in Rndim

where ndim is the number of dimensions of the space, and @Xv its

boundary. Let us assume that the boundary @Xv can be split into
@Xr and @Xv , being @Xv ¼ @Xr [ @Xv such that tractions are pre-
scribed on @Xr while velocities are specified on @Xv , respectively.
In a similar way, boundary @Xv can be also split into @Xq and @Xh

such that @Xv ¼ @Xq [ @Xh, where fluxes (on @Xq) and tempera-
tures (on @Xh) are prescribed for the heat transfer analysis.

In the FSW problem, the integration domain Xv ¼ X v tð Þð Þ is
subdivided into three different regions corresponding to the pin,
the work-piece and the stir-zone, as previously discussed. Let us
recall that when studying the work-piece, the integration domain,
Xv ¼ X xð Þ, does not move: it is defined in the Cartesian (Eulerian)
space. The integration domain of the pin, Xv tð Þ ¼ X X; tð Þ, moves
according to the displacement field of the material particles,
uðX; tÞ. Finally, the mesh defined for the stir-zone, Xv tð Þ ¼
X v tð Þð Þ, moves but the mesh velocity vmesh v tð Þð Þ, is different from
the material velocity, vðX; tÞ.

The weak form of the mechanical sub-problem defined in (43)
is:R

Xv
r � sð Þ � dv½ �dV þ

R
Xv
rp � dvð Þ dV þ

R
Xv

qob � dvð ÞdV ¼ 0 8dv;R
Xv
r �vð Þdp½ � dV ¼ 0 8dp

(

ð48Þ

and the thermal sub-problem defined in (44) results in:Z
Xv

qoc
@T
@t

����
v

þ c � rT

 !
dT

" #
dV þ

Z
Xv

r � qð ÞdT½ �dV

�
Z

Xv

_DmechdT
� �

dV ¼ 0 8dT; ð49Þ

where dv; dp and dT are the variations compatible with the Dirich-
let boundary conditions (test functions) of velocity, pressure and
temperature fields, respectively.

Integrating by parts, the following expressions are obtained:Z
Xv

r � sð Þ � dv½ �dV ¼ �
Z

Xv

s : rsdvð ÞdV þ
Z
@Xr

�t � dvð ÞdS; ð50Þ
Z

Xv

rp � dvð ÞdV ¼ �
Z

Xv

pr � dvð ÞdV ; ð51Þ
Z

Xv

r � qð ÞdT½ �dV ¼ �
Z

Xv

q � r dTð ÞdV �
Z
@Xq

�q dTð ÞdS; ð52Þ

where �t ¼ r � n are prescribed tractions on @Xr, while �q ¼ �q � n are
prescribed heat fluxes on @Xq.

Substituting (50) and (51) in (48), the mixed ðv=pÞ variational
form of the quasi-static incompressible mechanical problem
yields:R

Xv
s : rsdvð ÞdV þ

R
Xv

p r � dvð ÞdV ¼Wext
mech 8dv;R

Xv
r � vð Þdp½ �dV ¼ 0 8dp;

(
ð53Þ

and, in a similar way, substituting (52) in (49), the variational form
of the transient thermal problem results in:Z

Xv

qoc
@T
@t

����
v

þ c � rT

 !
dT

" #
dV þ

Z
Xv

krT � r dTð ÞdV ¼Wext
ther 8dT;

ð54Þ

where the heat flux has been computed using the Fourier’s law:
q ¼ �krT , being, k, the thermal conductivity.

In Eqs. (53) and (54), Wext
mech and Wext

ther denote the external work
of the mechanical and thermal loads, respectively:

Wext
mech dvð Þ ¼

Z
Xv

qob � dvð ÞdV þ
Z
@Xr

�t � dvð ÞdS; ð55Þ

Wext
ther dTð Þ ¼

Z
Xv

_DmechdT
� �

dV þ
Z
@Xq

�qdTð ÞdS: ð56Þ
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The coupled problem defined by the variational forms in (53)
and (54) is subjected to appropriate Dirichlet boundary conditions
in terms of prescribed velocity and temperature field, v ¼ �v and

T ¼ T in @Xv and @Xh, respectively, and the initial conditions for
the transient thermal problem in terms of initial temperature field:
T t ¼ 0ð Þ ¼ To.

Fig. 2. ALE formulation benchmarking: geometry and FE mesh.

Fig. 3. ALE formulation bechmarking: temperature field after one revolution.

360 M. Chiumenti et al. / Comput. Methods Appl. Mech. Engrg. 254 (2013) 353–369



Author's personal copy

5.1. Discrete and stabilized weak form of the mechanical problem

In the framework of the standard Galerkin finite element meth-
od, the discrete counterpart of the weak form for the mechanical
problem (53) can be written as:R

Xv
sh : rsdvhð ÞdV þ

R
Xv

ph r � dvhð ÞdV ¼Wext
mech dvhð Þ 8dvh;R

Xv
r � vhð Þdph½ � dV ¼ 0 8dph;

(

ð57Þ

where vh; dvh 2 Sh and ph; dph2 Ph are the finite element approxima-
tions and the corresponding variations of the velocity and pressure
fields, respectively, within the finite element spaces: Sh 	 H1 Xv

� �
and Ph 	 L2 Xv

� �
. The Ladyzhenskaya–Babuška–Brezzi (LBB) com-

patibility condition [14] restricts the choice of the finite element

spaces Sh and Ph to guarantee the stability of the solution. For in-
stance, standard Galerkin mixed ðP1P1Þ elements with continuous
equal order linear v=p interpolation violate the LBB condition; this
produces instabilities in the pressure field and poor numerical per-
formance. Stability can be achieved either choosing v=p interpola-
tion spaces that satisfy the LBB condition (e.g. P2P1 elements) or,
alternatively, circumventing this condition. A possible choice con-
sists of using a stabilization technique within the framework of
the variational multi scale (VMS) method (see the original idea in
[48]). In our work, the orthogonal subgrid scale (OSS) stabilization
technique has been adopted to stabilize P1P1 mixed v=p elements
with continuous equal order linear interpolation. The OSS tech-
nique, originally developed to fulfill the incompressibility condition
in CFD problems (see [26,28,27]), has been exploited in the solid
mechanics context to deal with elastic incompressibility and J2-
plasticity (isochoric) problems (see [5,17,21,22,54]). The resulting
discrete OSS stabilized weak form of the mechanical problem re-
sults in:R

Xv
sh : rsdvhð ÞdV þ

R
Xv

phr � dvhð ÞdV ¼Wext
mech dvhð Þ 8dvh;R

Xv
r � vhð Þdph½ �dV �

R
Xv

su rdph � rph �Phð Þ½ �dV ¼ 0 8dph;R
Xv
rph � dPhð ÞdV �

R
Xv

Ph � dPhð ÞdV ¼ 0 8dPh;

8>>><
>>>:

ð58Þ

Table 3
Time-step used in the numerical simulations according to the different angular
velocities.

rpm Period [s] Dt ½s�

40 1.50 5:791� 10�3

80 0.75 2:988� 10�3

120 0.50 1:992� 10�3

Fig. 4. Triflute pin FSW analysis: geometry and FE mesh.

M. Chiumenti et al. / Comput. Methods Appl. Mech. Engrg. 254 (2013) 353–369 361



Author's personal copy

where Ph and dPh are the smooth projection of the pressure gradi-
ent onto the finite element space and its variation.

The stabilization term introduced in the second Eq. of (58) is
computed as a function of the orthogonal projection of the
residual of the momentum balance equation (see first Eq. in
(26)) as:

P?ðrphÞ ¼ rph �Ph;

where the orthogonal projection ofr � s vanishes when using linear
triangles or tetrahedral elements. The stabilization parameter, su, is
computed element by element as:

su ¼ cu
h2

e

2leff
; ð59Þ

where he is the element size, cu is a constant and leff is the effective
viscosity. Observe that the effective viscosity leff Tð Þ is (usually) a
temperature dependent parameter leading to a temperature depen-
dent definition of the stabilization parameter, suðTÞ.

The resulting system in (58) is an accurate, stable and consis-
tent (as the stabilization term vanishes on mesh refinement) for-
mulation to solve the mechanical problem subjected to the
incompressibility constraint.

5.2. Discrete and stabilized weak form of the thermal problem

The discrete counterpart of the weak form for the thermal prob-
lem (56) is written as:Z

Xv

qoc
@Th

@t

����
v

þ ch � rTh

 !
dTh

" #
dV þ

Z
Xv

krTh � r dThð ÞdV

¼Wext
ther dThð Þ 8dTh; ð60Þ

where ðTh; dThÞ 2 Hh are the finite element approximations and the
corresponding variations of the temperature field within the finite
element space Hh 	 H1 Xv

� �
. Here, the stability problems may arise

due to the convective term. Also in this case, it is possible to adopt
the VMS framework to stabilize the formulation adding a residual-
based OSS stabilization term of the form:

Stab dThð Þ ¼
Z

Xv

shqoc ch � r dThð Þ ch � rTh �Ph
h

� �
 �
dV ; ð61Þ

where sh ¼ ch
he

2 chk k is the stabilization parameter for the thermal
(convective) problem, ch is a constant and Ph

h is the smooth projec-
tion of the convective term given by:Z

Xv

ch � rThð ÞdPh
h


 �
dV �

Z
Xv

Ph
h � dP

h
h

� �
dV ¼ 0 8dPh

h: ð62Þ

Fig. 5. FSW analysis using a triflute pin.
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The resulting discrete OSS stabilized weak form of the thermal
problem is:Z

Xv

qoc
@Th

@t

����
v

þ ch � rTh

 !
dTh

" #
dV þ

Z
Xv

krTh � r dThð ÞdV

þ
Z

Xv

shqoc ch � r dThð Þ ch � rTh �Ph
h

� �
 �
dV

¼Wext
ther dThð Þ 8dThZ

Xv

ch � rThð ÞdPh
h


 �
dV �

Z
Xv

Ph
h � dP

h
h

� �
dV ¼ 0 8dPh

h:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð63Þ

6. FSW zones interaction

According to the domain subdivision introduced to deal with
the kinematics of the FSW process, there exist two different kind
of domain interactions to be discussed. On one side, the link be-
tween the mesh of the work-piece (fixed) and the mesh used for
the stir-zone, which is rotating according to the pin motion. On
the other side, the thermo-mechanical contact behavior between
the stir-zone and the pin.

6.1. Modeling the work-piece/stir-zone interaction

When modeling the interface between the work-piece and the
stir-zone, the objective is to get continuous fields for all the state
variables v; p and T crossing the interface between the two do-
mains. Work-piece and stir-zone are parts of the same metal sheet
even if there exists a relative movement of the two computational
sub-domains.

In this work, two different solutions to deal with the interaction
at the contact interface between the stir-zone and the work-piece
are considered.

The simplest solution consists of assuming both coincident and
equi-spaced meshes at the interface. This means that for each
boundary node of the stir-zone there exists a corresponding node
on the surface of the work-piece. This connection must be kept
at each time-step of the simulation that is after any mesh sliding
(rotation). This is easy to achieve for 2D analyses but it is much
more demanding for an automatic 3D mesh generator, which usu-
ally supports unstructured tetrahedral meshes.

When considering coincident surface meshes, it is easy to
connect the integration domains by prescribing all the state vari-
ables v; p and T on one side (work-piece surface) to the corre-
sponding values on the other side (stir-zone surface). From the

Fig. 6. FSW analysis using a triflute pin: temperature evolution [�C].
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computational point of view, this procedure consists of two steps.
Firstly, it is necessary to set a time-step which ensures a perfect
node-to-node matching after each mesh sliding. Then, using a
search-algorithm (restricted to the interface nodes), it is necessary
to identify all the node-to-node (master/slave) connections at the
contact interface. Secondly, during the assembling procedure the
contributions (elemental residuals and tangent matrices) of the
slave nodes are assembled together with the corresponding contri-
butions of the master nodes.

The solution is more complex when there is no perfect match
between the master (a coarser mesh is usually defined for the
work-piece) and the slave (finer mesh for the stir-zone) surfaces.
In this case the strategy adopted consists of projecting each slave
node on the master surface to build-up the contact elements all
over the contact interface. Once the slave/master contact ele-
ments have been generated, one of following three approaches
is commonly pursued: the Lagrange multiplier method, the aug-
mented Lagrange method, or the penalty method. The simplest
approach is the penalty method [1], where very large values (pen-

alty parameters) of both stiffness and thermal resistivity are as-
signed to the contact elements to ensure the most rigid/
conductive behavior between the two domains in both the
mechanical and the thermal problems. Also in this case, the
contact elements must be re-constructed at each time-step
according to a (rather time-consuming) closest-point-projection
algorithm.

6.2. Modeling the pin/stir-zone interaction

When modeling the interaction between the pin and the stir-
zone the two sub-domains are rotating together. This does not
mean that the material moves with the same velocity at the two
sides of the contact interface.

Let us denote by, vpin, the velocity at the pin surface and, vsz, the
velocity at the stir-zone surface for each contact point of the pin/
stir-zone interaction. The relative slip velocity, Dvc , is defined as:

Dvc ¼ vpin � vsz: ð64Þ

Fig. 7. Triflute pin FSW analysis: temperature evolution at different thermocouple locations.

364 M. Chiumenti et al. / Comput. Methods Appl. Mech. Engrg. 254 (2013) 353–369



Author's personal copy

When the pin is plunged into the metal sheet the velocity field
at the stir zone is zero, so that the slip velocity is maximum,
Dvc ¼ vpin. During the transition to the steady-state, the material
at the stir-zone surface accelerates to fulfill the stationary sticking
condition, Dvc ! 0, that is vsz ! vpin.

This given, two different situations may occur: either sticking or
sliding conditions.

We refer to as sliding condition when it exists a relative slip be-
tween the contacting surfaces:

Sliding vpin
�� �� > vszk k: ð65Þ

The sticking condition is achieved when the material at the stir-zone
of the contact surface sticks to the pin surface:

Sticking vpin ¼ vsz: ð66Þ

In FSW the sticking/sliding condition changes continuously and
strongly depends on several parameters such as the normal pres-
sure or the temperature field generated by the friction or the plas-
tic dissipation processes.

6.2.1. Coulomb’s friction law
Let us define the slip function as:

/ tN; tTð Þ ¼ tTk k � g tNk k 6 0; ð67Þ

where g is the friction coefficient and tN and tT are the normal (pres-
sure) and the tangential (shear) components of the traction vector,
tc ¼ r � n, at the contact interface, defined as:

tN ¼ n
 nð Þ � tc ¼ tc � nð Þn; ð68Þ
tT ¼ I� n
 nð Þ � tc ¼ tc � tN ; ð69Þ

where n is the unit vector normal to the contact interface.
The slip velocity, Dvc , can be also split into normal and tangen-

tial components, DvN and DvT , respectively:

DvN ¼ n
 nð Þ � Dvc ¼ Dvc � nð Þn; ð70Þ
DvT ¼ I� n
 nð Þ � Dvc ¼ Dvc � DvN: ð71Þ

This given, in conventional Coulomb’s friction law, the friction
shear stress, tT , cannot exceed the admissible shear stress, smax,
so that the sticking condition is fulfilled when:

Sticking tTk k < smax ! vpin ¼ vsz: ð72Þ

The sliding condition is achieved when the friction shear stress
rises up to the admissible shear stress and a relative slip velocity
exists between the contacting surfaces:

Sliding tTk k ¼ smax ! vpin
�� �� > vszk k: ð73Þ

Let us define the following (regularized) definition of the tan-
gential component, tTk k, of the traction vector:

tTk k ¼ eT DvTk k � _c
@/
@ tTk k

� 	
¼ eT DvTk k � _cð Þ ð74Þ

This is a regularization (penalty method) of the Heaviside (step)
function typical of the frictional contact behavior, where eT is the
corresponding penalty parameter (for more details see [2]).

Using the Kuhn–Tucker conditions:

/ 6 0;
_c P 0;
/ _c ¼ 0

ð75Þ

defined in terms of the slip function (67) and the slip multiplier, _c, it
is possible to recover both the sticking and the sliding mechanisms
in a very simple form.

� The sliding condition is achieved for / ¼ 0. In this case, the tan-
gential component of the traction vector, tT , is given by:

tT ¼ smaxuT ; ð76Þ

where smax is obtained from Eq. (67) as:

smax ¼ g tNk k ð77Þ

while the tangential unit vector, uT , is computed as:

uT ¼
DvT

DvTk k : ð78Þ

The normal component of the traction vector is obtained with a fur-
ther penalization as:

tN ¼ eNDvN ; ð79Þ

where eN is the normal penalty parameter, which is enforcing the
stick condition in the normal direction.
� The stick condition is achieved for _c ¼ 0. The tangential compo-

nent of the traction vector is obtained from Eqs. (74) and (78)
as:

tT ¼ eTDvT

and the normal component of the traction vector is given by Eq.
(79).

Remark-1: Eqs. (74) and (75) have the same format as in classi-
cal J2 plasticity (see [2]): in that case, /, is representing the yield
surface and, _c, the plastic multiplier.

Remark-2: The penalty method, introduced to regularize the
contact problem, is an elegant format to circumvent the numerical
difficulties of the discontinuous solution. However, the choice of
the penalty parameters remains a difficult task. On one side, high
values approximate better the Heaviside (step) function, but at
the same time they lead to ill-conditioning of the solution matrix.
On the other side, the use of lower values for the penalization re-
tains the stick condition for too long.

Remark-3: The friction coefficient, g T;Dvcð Þ, is a highly non-lin-
ear function of both the surface temperature, T, and the relative
slip velocity, Dvc , making the calibration of the Coulomb’s law in
the transient phase of the FSW process difficult [8].

6.2.2. Norton’s friction law
In most of the FSW processes the sliding condition is predomi-

nant, so that even if the material close to the pin surface is accel-
erated, in practice, it never reaches the tool velocity (sticking
condition). In the sliding condition, the Coulomb’s law is a poor
representation of the frictional phenomena which depends on a
constant friction coefficient. The Norton’s friction law shows a more
realistic behavior, taking into account both the surface tempera-
ture and the relative sliding velocity [8]. This friction law can be
written in compact form as:

tT ¼ gequT ð80Þ

and the equivalent friction coefficient, geq T;DvTð Þ, is expressed as:

geq ¼ a Tð Þ DvTk kq; ð81Þ

where a Tð Þ is the (temperature dependent) material consistency
and 0 6 q 6 1 is the strain rate sensitivity. For q ¼ 0, the Coulomb’s
law is recovered and a Tð Þ represents the (temperature dependent)
admissible shear stress, smax.

Two alternative implementation strategies are possible depend-
ing on the mesh generated at the contact interface.

On one hand, if the surface meshes of pin (master) and stir-zone
(slave) are non-coincident, the first step consists of generating the
contact elements: all slave nodes are projected onto the best
matching master facet (discretized counterpart of the master sur-
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face) according to a classical closest-point projection algorithm.
Each contact element is built up using the slave node and the
nodes belonging to the selected master facet. Both the elemental
residual and stiffness matrix are split into normal and tangential
contributions. Hence, the thermo-mechanical contact interaction
is guaranteed by enforcing the continuity of both normal and tan-
gential components of the traction vector:

tpin
N ¼ �tsz

N ; ð82Þ
tpin

T ¼ �tsz
T : ð83Þ

In a similar way, the heat flux crossing the surface must satisfy:

qpin ¼ �qsz; ð84Þ

where the heat flux, q, is computed using Newton’s law (see [23]),
defined in terms of the temperature gap and the heat transfer coef-
ficient, hc:

qpin ¼ hc Tpin � Tsz
� �

; ð85Þ

qsz ¼ hc Tsz � Tpin
� �

: ð86Þ

On the other hand, it is very interesting to consider the case of
coincident surface discretization at the contact interface. In this
case, there is a node-to-node correspondence and it is not necessary
to generate contact elements. Furthermore, the rotation of slave
and master surfaces is synchronized so that a searching operation
at each time-step is not necessary. The main advantage of using
coincident meshes consists of avoiding the use of penalty parame-
ters for the stick condition. Slave and master nodes can be linked
together using the same (master) nodal variables:

vpin ¼ vsz: ð87Þ

For the slip condition, it is necessary to split the velocity field at the
interface into normal and tangential components: the normal com-
ponent is treated as for the stick condition while in the tangential
direction is necessary to enforce the continuity of the tangential
traction vector as:

vpin
N ¼ vsz

N ; ð88Þ
tpin

T ¼ �tsz
T : ð89Þ

Finally, in the numerical simulation of the FSW process, it is
important to account for the heat flux induced by the friction dis-
sipation, as this is the key mechanisms of heat generation during
the welding process. When the sliding condition is satisfied, the
heat flux generated by the friction dissipation in both Norton and
Coulomb (as a particular case when the rate sensitivity parameter
q ¼ 0) friction laws is computed as:

qpin
frict ¼ #

pin tT � DvT½ � ¼ #pina Tð Þ DvTk kqþ1; ð90Þ

qsz
frict ¼ #

sz tT � DvT½ � ¼ #sz a Tð Þ DvTk kqþ1 ð91Þ

so that the total amount of heat generated during the friction dissi-
pation is split into the fraction absorbed by the pin #pin and the frac-
tion absorbed by the work-piece in the stir-zone #sz ¼ 1� #pin,
computed respectively as:

#pin ¼ apin

apin þ asz
; ð92Þ

#sz ¼ asz

apin þ asz
; ð93Þ

where a ¼ k
qoc is the thermal diffusivity of the material. The more

diffusive is the material (compared to the other one) the more heat
it absorbs (e.g. welding aluminum with a steel pin: #pin � 0:8 and
#sz � 0:2).

7. Numerical simulations

The formulation presented in the previous sections is illustrated
here with a number of numerical simulations. The goals are two-
fold: firstly, to demonstrate the accuracy of the proposed ALE kine-
matic formulation comparing the results with a reference solution;
secondly, to show the FSW simulation capabilities accounting for
both stirring and frictional effects when using a non-cylindrical
pin.

Computations are performed using the in-house finite ele-
ment code COMET [16] developed by the authors at the Interna-
tional Center for Numerical Method in Engineering (CIMNE) in
Barcelona, Spain. The post-processing of the results has been
carried out using the pre and postprocessor GiD also developed
at CIMNE [41].

7.1. ALE formulation benchmark

Fig. 2(a) represents a square domain of 80� 80 ½mm2�. This
computational domain is divided in two different areas (gray and
blue) where the circular section has a diameter of 40 ½mm�.

An inflow velocity of 0.01 [m/s] is imposed at the left side of the
domain, representing the body movement from right to left. Vertical
velocity is prescribed to zero at the top and bottom side of the do-
main. The initial temperature field consists of a linear distribution
varying from the top side ð50 �CÞ to the bottom side ð�50 �CÞ,
defining a constant temperature gradient along the vertical direc-
tion. For the sake of simplicity, constant thermo-physical properties
have been used to characterize the material (aluminum alloy):
qo ¼ 2600 kg=m3


 �
; c ¼ 900 J= kg Kð Þ½ � and k ¼ 150 W= m Kð Þ½ �,

corresponding to the density, the specific heat and the thermal
conductivity, respectively.

The FE discretization of the computational domain is presented
in Fig. 2(b). It consists of 12,453 nodes and 24,744 triangular ele-
ments with an average size of 0.5 [mm] in the blue area and 1.0
[mm] in the gray zone.

Using an Eulerian approach, the solution of this problem is sim-
ple: it is a rigid movement defined by a constant velocity field (the
inflow velocity) and a null pressure field. The Eulerian formulation
also solves the thermal problem exactly because the convective
term is null by construction: the velocity is orthogonal to the tem-
perature gradient everywhere. Hence, the initial temperature field
is also the steady-state solution of the problem as shown in
Fig. 3(a).

The purpose of this numerical example is to show the accuracy
of the proposed ALE formulation solving the same problem when
the mesh in the blue area is rotating (anti-clockwise) with an angu-
lar velocity of 40, 80 and 120 [rpm], respectively. This problem pre-
sents the same kind of difficulties of a FSW simulation where the
gray zone represents the work-piece, while the blue area stands
for the stir-zone which is rotating together with the pin. The se-
lected values for the angular velocity are in the range commonly
used for industrial aluminum FSW process.

In this case, the thermal solution is not exact because the con-
vective term due to the mesh movement must be solved:
c � rT ¼ �vmesh � rT – 0. The Courant number, defined as Cu ¼
vmeshk k Dt

he
, is useful to check the accuracy of the solution in terms

of selected mesh size he, and the time-increment, Dt chosen.
Forcing node-to-node mesh synchronization at the interface be-

tween the gray and the blue domains, then Cu 6 1 in all the blue
domain and null in the gray area. At the sliding interface Cu ¼ 1.
This is the maximum value in all the computational area, preserv-
ing the accuracy of the solution. A fixed number of 251 time-steps
are necessary to complete one revolution, which corresponds to
the number of elements at the sliding interface. Table 3 shows
the time-increment, Dt, used in the simulations.
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Fig. 3 show the temperature contour-fill after one full rotation
of the blue domain. It is possible to notice a very small perturba-
tion of the temperature gradient proportional to the angular veloc-
ity. However, the error introduced in the ALE domain by the
convective term does not compromise the accuracy of the analysis.
Higher rotation velocities could require finer mesh discretization
and the corresponding reduced time-stepping to keep the Courant
number, Cu 6 1.

7.2. Triflute pin FSW analysis

The next example demonstrates the performance of the pro-
posed formulation when simulating a real-case FSW process. Using
the same square domain presented in the previous example a trif-
lute pin (green area) is added in the middle of the stir-zone (blue
domain), as shown in Fig. 4(b).

The pin shape is obtained starting from an original circular sec-
tion (green area) with a diameter of 10 ½mm� where three circular
segments have been removed as detailed in Fig. 4(a). The white cir-
cles have the same diameter (10 mm½ �) than the green one and the
distance between the center of each white circle and the center of
the green one is 8:66 ½mm� leading to a subdivision of the circum-
ference of the green circle in six equal parts.

The corresponding mesh is shown in Fig. 4 and a detail of the FE
discretization close to the pin is presented in Fig. 4(d). This mesh is
exactly the same (12,453 nodes and 24,744 triangular elements)
used in the ALE benchmark but, in this case, the green area repre-
sents the triflute pin. This FE discretization has proved to guarantee
sufficient accuracy when solving the thermo-mechanical problem
(a finer mesh does not significantly modify neither the tempera-
ture nor the velocity field).

The simulations have been carried out considering a Norton–
Hoff model with constant effective viscosity, leff ¼ 100 MPa=s½ �
and a constant exponent, m ¼ 0:2, for both the work-piece and
the stir-zone. The pin is assumed to be rigid. The thermo-physical
properties (density, specific heat and thermal conductivity) used to
characterize the aluminum sheet are the same as in the previous
benchmark while the pin has been characterized by typical thermo-
physical properties of a steel: qo ¼ 7800 kg=m3


 �
; c ¼ 500 J= kg Kð Þ½ �

and k ¼ 25 W= m Kð Þ½ �, respectively.
The welding parameters are given in terms of constant advanc-

ing velocity 0:010 m=s½ � and different constant rotational (anti-
clockwise) angular velocity: 40, 80 and 120 [rpm], respectively. In
the simulations the pin is rotating around a fixed axis while the me-
tal-sheet moves towards the pin from the left to right (which corre-
sponds to the pin advancing movement from right to left). The
initial (uniform) temperature for all the welding tools is 20 �C.

Perfect stick (infinite frictional coefficient) is prescribed at the
interface between the pin (green) and the stir-zone (blue). This
hypothesis is realistic when welding aluminum with steel tools.
The interface between the stir-zone (blue) and the rest of the
work-piece (gray) is treated as for the ALE benchmark: a sliding
motion enforces node-to-node mesh synchronization to keep the
Courant number, Cu 6 1 in all the domain, preserving the accuracy
of the solution. The time increments used are those in Table 3.

Fig. 5(a) and (b) show the velocity and pressure contour-fill,
respectively, for the angular velocity of 40 [rpm]. It is interesting
to note the quality of the pressure field, free of any spurious oscil-
lation thanks to the OSS stabilization technique adopted to deal
with the incompressibility condition.

Fig. 5(c) shows the velocity vectors in the stir-zone close to the
pin. Here, the triflute shape seems not to be so relevant for the
material stirring and the pin effectively acts as a circular FSW tool.
The material entrapped in the circular segments is transported fol-
lowing the pin motion as clearly manifested by the stream-lines in
Fig. 5(d).

Fig. 6 shows the temperature field after 1, 4, 7 and 10 revolu-
tions, respectively. The initially uniform temperature field is af-
fected by the heat generated either by the plastic dissipation due
to the material stirring or by the frictional mechanism at the pin/
stir-zone interface.

Fig. 7(a) defines the position of the midsection line and the loca-
tion of three virtual-thermocouples (at the center of the pin, in the
stir-zone close to the pin and at the border between the stir-zone
and the rest of the work-piece) where the temperature evolution is
recorded. Fig. 7(b) shows the temperature variation along the mid-
section after 1, 4, 7 and 10 revolutions, respectively. On one hand,
the lower thermal diffusivity of the pin (steel-made) causes the
two picks in all the curves. On the other hand, after 10 revolutions
the temperature field is very close to the steady-state value and
the numerical simulation can be terminated. Fig. 7(c) shows the tem-
perature evolution at the location of the three virtual-thermocouples:
in all cases the temperature is close to the steady-state condition and
reaches the maximum value at the pin/stir-zone interface. Finally,
Fig. 7(d) shows the maximum temperature attained at the pin/stir-
zone interface for different pin-rotation velocities: 40 [rpm], 80
[rpm] and 120 [rpm], respectively. The relationship between angular
velocity and maximum temperature achieved is mostly linear and
the optimal pin-rotation velocity which guarantees a working tem-
perature close to the melting point is in the range of 90 [rpm].

8. Conclusions

This work presents the strategy adopted for the numerical sim-
ulation of the FSW process. A coupled thermo-mechanical solution
of both the momentum and energy balance equations is presented.
A very general kinematic framework has been used to deal with
the specific description of motion in the FSW problem. More in de-
tail, the ALE formulation of the balance equations has been intro-
duced to describe the relationship between the material and the
mesh movement in the stir-zone. This formulation includes, as limit
cases, either the Eulerian framework for the rest of the metal sheet
while moving toward the pin or the Lagrangian description used to
follow the pin rotation. The two different mechanisms of heat gen-
eration coming from stirring and friction have been described, cou-
pling the mechanical and thermal models. In the hypothesis of
incompressible material behavior the stabilized mixed v=p formula-
tion has been used due to the good performance of this technology,
especially for industrial simulations when triangular/tetrahedral
meshes must be used for the domain discretization. Following the
same strategy, the convective term in the thermal partition has
been stabilized using the same OSS stabilization, leading to a very
accurate treatment of this phenomenon. The numerical benchmarks
have shown the accuracy of both the thermal and the mechanical
responses when a FSW process is simulated.
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